Sep
26
¡ EL DEBATE !
por Emilio Silvera ~ Clasificado en Debates ~ Comments (1)
Una idea propuesta aquí en los comienzos de ésta página Web, para llevarla a la práctica en el Blog, fue la de crear un espacio de DEBATE que, funcionará, mediante el planteamiento de un tema en particular en el que todos podais participar y exponer vuestras opiniones.
Este apartado, podrá funcionar si todos ustedes, los lectores visitantes del lugar, participais con vuestras opiniones que, de seguro, serán interesantes.
Quedo agradecido de antemano por vuestra colaboración y, a partir del día uno del mes próximo, aquí leeré (ahora me toca a mí) vuestros comentarios al tema propuesto que estará vigente durante una semana, después, para que el debate tenga variedad, será propuesta una nueva idea a debatir.
Saludos.
Sep
16
Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Nuestra colaboración con el Año Internacional de la Astronomía 2009, está centrado básicamente en llevar al público en general conocimientos sobre el Universo, las fuerzas que lo rigen y los objetos que lo pueblan.
Fuerza nuclear fuerte
Su alcance en metros: < 3 × 10-15, se dice que la propiedad de los quarks conocida como libertad asintótica hace que la interacción entre ellos sea débil cuanto más cerca están los unos de los otros, están confinados con los gluones en un radio o región de: r » hc/L » 10-13 cm.
Al contrario de las otras fuerzas, esta crece con la distancia. Tiene una fuerza relativa de 1040. Es la responsable de mantener unidos a los protones y neutrones en el núcleo atómico.
La partícula portadora de la fuerza es el gluón (glue en inglés, es pegamento) que en número de ocho, actúa como un espeso pegamento en forma de muelle que, cuanto más se estira más fuerza genera.
La interacción nuclear fuerte es la mayor, la de más potencia de las cuatro fuerzas fundamentales, es 102 veces mayor que la fuerza electromagnética, aparece sólo entre los hadrones (protones, neutrones, etc). Es la responsable de mantener unidos los nucleones y hacer estable el núcleo de los átomos. Como dijimos al principio, actúa a tan corta distancia como 10-15 metros, mediado por los mesones virtuales que llamamos gluones.
Sep
12
Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Hay aquí algunas grandes hipótesis sobre el carácter único de la vida humana en el universo (creo que equivocada). En cualquier caso se plantea la pregunta, aunque no se responde, de por qué estamos aquí en el tiempo y lugar en que lo hacemos. Hemos visto que la cosmología moderna puede ofrecer algunas respuestas esclarecedoras a estas preguntas.
En mi anterior trabajo quedaron reflejadas todas las respuestas a estas preguntas. Nada sucede porque sé, todo es consecuencia directa de la causalidad. Cada suceso tiene su razón de ser en función de unos hechos anteriores, de unas circunstancias, de unos fenómenos concretos que de no haberse producido, tampoco el tal suceso se habría significado, simplemente no existiría. Con la vida en nuestro planeta, ocurrió igual. Una atmósfera primitiva evolucionada, la composición primigenia de los mares y océanos con sus compuestos, expuestos al bombardeo continuo de radiación del espacio exterior que llegaba en ausencia de la capa de ozono, la temperatura ideal en relación a la distancia del Sol a la Tierra y otra serie de circunstancias muy concretas, como la edad del Sistema Solar y los componentes con elementos complejos del planeta Tierra, hecho del material estelar evolucionado a partir de supernovas, todos estos elementos y circunstancias especiales en el espacio y en el tiempo, hicieron posible el nacimiento de esa primera célula que fue capaz de reproducirse a sí misma y que, miles de años después, hizo posible que evolucionara hasta lo que hoy es el hombre que, a partir de materia inerte, se convirtió en un ser pensante que ahora es capaz de exponer aquí mismo estas cuestiones. ¡Es verdaderamente maravilloso!
El entorno cambiante en un universo en expansión como el nuestro, a medida que se enfría y envejece (la entropía) es posible que se formen átomos, moléculas, galaxias, estrellas, planetas y organismos vivos. En el futuro, las estrellas agotaran su combustible nuclear y morirán todas. En función de sus masas serán estrellas enanas blancas (como nuestro Sol), estrellas de neutrones (a partir de 1’5 masas sobre hasta 3 masas solares) y agujeros negros a partir de 3 masas solares. Hay un recorrido de historia cósmica en el que nuestro tipo de evolución biológica debe ocurrir bajo esas circunstancias especiales a las que antes me referí.
Sep
12
Planck y Riemann
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Tiempo de Planck
Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por
segundos
donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34 Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).
El valor del tiempo del Planck es del orden de 10-44 segundos. En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del universo.
Expresado en números corrientes que todos podamos entender, su valor es 0’000.000.000.000.000.000.000.000.000.000.000.010. de 1 segundo, que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10-35 metros (veinte ordenes de magnitud menor que el tamaño del protón de 10-15 metros). El límite de Planck es
Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.
Sep
7
Sobre las implicaciones de la Relatividad II
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
La llegada de Einstein, en 1.905, fue para la física como el elefante que entró en la cacharrería; lo puso todo patas arriba. Los cimientos de la física temblaron con aquellos nuevos y osados conceptos que, en un primer momento, no todos pudieron comprender. Precisamente, Max Planck fue uno de esos pocos privilegiados que, al leer el artículo de Einstein sobre la relatividad especial, comprendió que a partir de ese momento habría que concebir la física bajo la base de otros principios.
Einstein, un desconocido, le decía al mundo científico que la velocidad de la luz en el vació, c, era el límite de la velocidad alcanzable en nuestro universo; nada podía ir más rápido que la luz. Además, decía que el tiempo es relativo y que no transcurre igual para todos. La velocidad del paso del tiempo depende de la velocidad a la que se viaje y de quien sea el observador.
El jefe de estación observa como para el tren que viaja a 60 km/h. Puede ver como un niño que viaja con su padre, sentado junto a él, se asoma por la ventanilla y arroja una pelota, en el mismo sentido de la marcha del tren, impulsándola con una fuerza de 20 km/h. Si el que mide la velocidad de la pelota es el jefe de estación, comprobará que ésta va a 80 km/h, los 60 km a los que viaja el tren, más los 20 km a los que el niño lanzó la pelota; ambas velocidades se han sumado. Sin embargo, si la velocidad de la pelota es medida por el padre del niño que también va viajando en el tren, la velocidad será de 20 km/h, sólo la velocidad de la pelota; no se suma la velocidad del tren, ya que quien mide está montado en él y por lo tanto esta velocidad no cuenta. La velocidad de la pelota será distinta dependiendo de quien la mida, si el observador está en reposo o en movimiento.
De la misma manera, Einstein, en su teoría, nos demostraba que el tiempo transcurre más lentamente si viajamos a velocidades cercanas a las de la luz.
Tal afirmación dio lugar a la conocida como paradoja de los gemelos. Resulta que dos hermanos gemelos de 28 años de edad se han preparado, uno para arquitecto y el otro para astronauta. El hermano astronauta se dispone a realizar un viaje de inspección hasta Alfa Centauri y su hermano se queda en la Tierra esperando su regreso.
Cuando por fin el astronauta, que a viajado a 250.000 km/s, regresa a la Tierra, desembarca con una edad de 38 años y es recibido por su hermano gemelo que se quedó en la Tierra y que tiene la edad de 80 años. ¿Cómo es posible eso?
Pues ha sido posible porque el hermano que viajó a velocidades cercanas a la de la luz ralentizó el tiempo que transcurrió más lentamente para él que para su hermano de la Tierra. El astronauta viajó hasta Alfa Centauro a 4’3 años luz de la Tierra, ida y vuelta 8’6 años luz. Pero al viajar tan rápido, muy cerca de la velocidad de la luz, transcurrieron sólo 10 años, mientras que en la Tierra pasaron 52 años.
Aunque parezca increíble, esa es la realidad comprobada.
También Einstein postulaba en su teoría que la masa y la energía eran dos aspectos de una misma cosa; la masa sólo era energía congelada. Para ello formulaba su famosa ecuación E = mc2.
En otro artículo, inspirado por el “cuanto” de Planck, Einstein dejó plasmado lo que desde entonces se conoce como “efecto fotoeléctrico”, demostrando que las partículas unas veces se comportan como tales y otras como una onda. Este trabajo le valió el premio Nobel de Física de 1.923, aunque la mayoría de la gente cree que se lo dieron por su teoría de la relatividad. En verdad, si se considera la importancia de sus trabajos, la Relatividad Especial se merecía un premio Nobel y la Relatividad General de 1.915, se merecía otro.
De todos sus trabajos, el más completo e importante, es el de la relatividad general, de cuya importancia para la física y para la cosmología, aún hoy, cerca de un siglo después, se están recogiendo resultados. Así de profunda, importante y compleja (dentro de su sencillez y belleza) son las ecuaciones de Einstein que un siglo después continua enviando mensajes nuevos de cuestiones de vital importancia. La teoría M también tiene su origen en la relatividad general que curva el espacio y distorsiona el tiempo en presencia de grandes masas, haciendo posible la existencia de agujeros negros y agujeros de gusano que según algunos, serán la posible puerta para viajar a otros universos y a otro tiempo.
Es necesario que los científicos piensen en estas cosas para solucionar los problemas del futuro y cuándo llegue el momento, salir de las encrucijadas a las que, irremediablemente, estamos destinados.
La gente corriente no piensa en estas cuestiones; su preocupación es más cercana y cotidiana, la hipoteca del piso o los estudios de los niños y, en la mayoría de los casos, lo importante es el fútbol. Es una lástima, pero así son las cosas. No se paran ni a pensar cómo se forma una estrella, de qué está hecha y por qué brilla. Nuestro Sol, por ejemplo, es una estrella mediana, amarilla, del Grupo G-2, ordinaria, que básicamente consume hidrógeno y como en el Big Bang original, lo fusiona en helio. Sin embargo, puesto que los protones en el hidrógeno pesan más que en el helio, existe un exceso de masa que se transforma en energía mediante la fórmula de Einstein E = mc2. Esta energía es la que mantiene unidos los núcleos. Esta es también la energía liberada cuando el hidrógeno se fusiona para crear helio. Esta, al fin, es la razón de que brille el Sol.
Ya hemos comentado antes que los elementos complejos se forman en las estrellas que, desde el hidrógeno, helio, litio, berilio, carbono, neón, etc, hasta el uranio, sin las estrellas no existirían… y nosotros tampoco, ya que nuestra forma de vida está basada en el carbono, un material que tiene su origen en las estrellas.
Cuestiones tan básicas como estas son ignoradas por la inmensa mayoría del común de los mortales que, en la mayor parte de los casos tiene una información errónea y deformada de las cosas que se han transmitido de unos a otros de oída, sin base científica alguna y, generalmente, confundiendo los términos y los conceptos.
En EEUU, por ejemplo, se realizó una encuesta entre la gente de la calle y una enorme mayoría desconocía que el universo está en expansión, que la Tierra se mueve a 30 km/s, y cuáles son los nucleones (partículas) que forman los núcleos de los átomos. Muy pocos contestaron el nombre del grupo de galaxias al que pertenece la nuestra, la Vía Láctea, y tampoco supieron contestar a qué distancia se encontraba nuestra vecina, la galaxia Andrómeda, o simplemente a qué distancia estamos nosotros del centro de nuestra galaxia, qué diámetro mide ésta o cuántas estrellas contiene.
En ese examen del conocimiento básico sobre el lugar donde nos encontramos o cómo funciona el Sol, los examinados se llevaron a sus casas (como diría Aznar) un cero patatero. Lástima, pero así son las cosas, y lo grave es que el resultado de la encuesta habría sido el mismo en cualquier parte. A la inmensa mayoría de las veces en que alguien expone conocimientos científicos, ocurre lo mismo, no va nadie del pueblo llano, ni por curiosidad y, de ser así (he sido testigo), a los diez minutos están bostezando. A esta mayoría, la inteligencia les persigue, pero ellos son mucho mas rápidos.
Así las cosas, estamos supeditados a unos pocos enamorados de la ciencia que, muchas veces, en las más ínfimas condiciones, (se les escatima el presupuesto) trabajan e investigan por la propia inercia de su curiosidad y deseo de saber para entregar al mundo (que no lo agradece) el logro de sus desvelos.
Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sumas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.
Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves son retazos de conocimiento que nos permiten entrar en esos nuevos compartimentos del saber.
Desde tiempos inmemoriales, la Humanidad para avanzar se sirvió de las llaves encontradas por Tales de Mileto, Empédocles, Demócrito, Platón, Pitágoras, Aristóteles… Galileo, Newton… Stoney, Max Planck, Einstein, Heisemberg, Dirac, Feynman,… Witten… y vendrán otros que, con su ingenio y sabiduría, impedirán que todos los demás regresen a las cavernas. Así que ¡a disfrutar de la TV, el fax, los ordenadores, internet, los satélites, los teléfonos móviles tan necesarios, etc! No sabemos cómo funciona todo eso pero ¿qué más da?
Siempre habrá gente que se preocupe por los demás y harán el trabajo necesario para sacarles las castañas del fuego. Esa gente a la que me refiero, son los “chiflados” científicos, siempre en las nubes todos ellos, y no como los políticos “tan pendiente siempre de solucionar nuestros problemas”.
Pero dejemos el tema de la política para evitar que esto termine como el rosario de la aurora. Contemplando lo que ocurre, la desfachatez de los gobernantes que retuercen la ley para hacernos creer que esta dice todo lo contrario que pretendía el legislador al promulgarla, para así conseguir sus fines particulares y de partido a costa de dar una patada al trasero del bien general. Contemplando esto, digo, me entrar ganas, asqueado, de realizar un viaje en el tiempo y desaparecer de este mezquino, injusto e hipócrita momento.
Ahora que menciono el viaje en el tiempo recuerdo “La máquina del tiempo” de H. G. Wells, en la que el científico se sienta en un sillón situado en su sala de estar, gira unos pocos botones, ve luces parpadeantes y es testigo del vasto panorama de la Historia; coloca la aguja para el pasado o para el futuro, señala el año que desea visitar y las guerras y civilizaciones pasan vertiginosamente ante sus ojos y la máquina se detiene en el año, mes y día que él señaló en una especie de dial.
Tan rudimentario artilugio contrasta con el que propone Kip S. Thorne. Éste consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos campos eléctricos creados entre cada par de placas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada hasta velocidades cercanas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones del espacio con tiempos diferentes, un reloj en la primera cabina marcha más despacio que un reloj en la segunda cabina. Debido a que el tiempo transcurrirá diferente en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado el pasado o al futuro.
Otra máquina del tiempo podría tener el siguiente aspecto. Si puede encontrarse materia exótica y dársele la forma de metal, entonces la forma ideal sería probablemente un cilindro. Un ser humano está situado en el centro del cilindro. La materia exótica distorsiona entonces el espacio y el tiempo a su alrededor, creando un agujero de gusano que se conecta a una parte lejana del universo en un tiempo diferente. En el centro del vértice está el ser humano, que no experimenta más que 1 g de tensión gravitatoria cuando es absorbido en el agujero de gusano y se encuentra así mismo en el otro extremo del universo.
Aparentemente, el razonamiento matemático de Thorne es totalmente impecable. Las ecuaciones de Einstein muestran en realidad que las soluciones de agujeros de gusano permiten que el tiempo transcurra a diferentes velocidades en cada extremo del agujero de gusano, de modo que el viaje en el tiempo es posible en principio. El problema reside en crear el agujero de gusano en primer lugar, y como Thorne y sus colaboradores señalan rápidamente, lo difícil está en cómo dominar la energía suficiente para crear y mantener un agujero de gusano, como se ha dicho, con materia exótica que, de momento, no parece fácil de conseguir.
Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los automóviles en movimiento, los pájaros que vuelan y los misiles propulsados tienen todos energías positivas. (Por definición, el espacio vacío tiene energía nula.) Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el del vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un círculo.
Este concepto más bien simple se conoce con un título que suena complicado: la condición de energía media débil (AWEC). Como Thorne tiene cuidado de señalar, la AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente, y que desde luego, nos vendrían como anillo al dedo para solucionar serios problemas.
Kip S. Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica. En 1.948, el físico holandés Herrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas. Ordinariamente, el sentido común nos dice que estas dos palcas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Heisemberg, en el vacío que separa estas dos placas hay realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente a partir de la nada en ese espacio “vacío”, partículas virtuales que mediante el efecto túnel vienen y van fugaces, tan fugaces que son en su mayoría inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neta atractiva entre las dos placas de Casimir que predijo que era medible.
Cuando Casimir publicó su artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, 10 años después, en 1.958, el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como predijo Casimir. Desde entonces, ha sido bautizado como el “efecto Casimir”.
Por el momento, aun no hay veredicto sobre la máquina del tiempo de Thorne. Todos están de acuerdo en que el factor decisivo es tener una teoría de la gravedad completamente cuantizada para zanjar la cuestión de una vez por todas. Por ejemplo, Stephen Hawking ha señalado que la radiación emitida en la entrada del agujero de gusano sería muy grande y contribuiría a su vez al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación en las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, quizá incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.
Los dos físicos, Hawking y Thorne, muy amigos, tienen una apuesta sobre el tema. ¿Quién la ganará? Puede suceder que la respuesta llegue cuando ninguno de los dos exista.
Thorne, a petición de su amigo Carl Sagan, le asesoró en la novela “Contact” que en el cine interpretó Jodie Foster, y en la que una experta astrónoma buscaba contactar con inteligencia extraterrestre y lo consigue, recibiendo los planos para la construcción de una maquina del tiempo mediante el agujero de gusano de Thorne.
La película está conseguida y el objetivo perseguido también; un mensaje de lo que, en un futuro (aún lejano) podría ser posible.
Claro que, para ello, antes habrá que conseguir unificar la Relatividad General de Einstein (la gravitación universal), con la Mecánica Cuántica de Planck (el microcosmos, el átomo), lo que de nuevo nos lleva al punto de partida: