miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La importancia de la ¡LUZ!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡LA LUZ!

La luz es importante en nuestras vidas, tan importante que hasta hemos inventado luz artificial para alumbrar nuestras casas y ciudades y escapar de la fea oscuridad. Es una forma de radiación electromagnética a la que el ojo humano es sensible y sobre la cual depende nuestra conciencia visual del universo y sus contenidos.

La velocidad finita de la luz fue sospechada por muchos experimentadores en óptica, pero fue establecida en 1.676, cuando O. Röemer (1.644 – 1.710) la midió. Sir Isaac Newton (1.642 – 1.727) investigó el espectro óptico y utilizó los conocimientos existentes para establecer una primera teoría corpuscular de la luz, en la que era considerada como un chorro de partículas que provocaban perturbaciones en el “éter” del espacio.

Sus sucesores adoptaron los corpúsculos, pero ignoraron las perturbaciones con forma de onda hasta que Thomas Young (1.773 – 1.829) redescubrió la interferencia de la luz en 1.801 y mostró que una teoría ondulatoria era esencial para interpretar este tipo de fenómenos. Este punto de vista fue adoptado durante la mayor parte del siglo XIX y permitió a James Clerk Maxwell (1.831 – 1.879) mostrar que la luz forma parte del espectro electromagnético. En 1.905, Albert Einstein (1.879 – 1.955) demostró que el efecto fotoeléctrico sólo podía ser explicado con la hipótesis de que la luz consiste en un chorro de fotones de energía electromagnética discretos, esto es, pequeños paquetes de luz que él llamó fotones y que Max Planck llamó cuantos. Este renovado conflicto entre las teorías ondulatorias y corpuscular fueron gradualmente resueltas con la evolución de la teoría cuántica y la mecánica ondulatoria. Aunque no es fácil construir un modelo que tenga características ondulatorias y cospusculares, es aceptado, de acuerdo con la teoría de Bohr de la complementariedad, que en algunos experimentos la luz parecerá tener naturaleza ondulatoria, mientras que en otros parecerá tener naturaleza corpuscular. Durante el transcurso de la evolución de la mecánica ondulatoria también ha sido evidente que los electrones y otras partículas elementales tienen propiedades de partícula y onda.

El fotón es una partícula con masa en reposo nula consistente en un cuanto de radiación electromagnética (cuanto de luz). El fotón también puede ser considerado como una unidad de energía igual a hf, donde h es la constante de Planck y f es la frecuencia de radiación en hertzios. Los fotones viajan a la velocidad de la luz, es decir, a 299.792.458 metros por segundo. Son necesarios para explicar (como dijo Einstein) el efecto fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula unas veces y de onda otras.

El conocimiento de la luz (los fotones), ha permitido a la Humanidad avances muy considerables en electrónica que, al sustituir los electrones por fotones (fotónica) se han construido dispositivos de transmisión, modulación, reflexión, refracción, amplificación, detección y guía de la luz. Algunos ejemplos son los láseres y las fibras ópticas. La fotónica es muy utilizada en telecomunicaciones, en operaciones quirúrgicas por láseres, en armas de potentes rayos láser y… en el futuro, en motores fotónicos que, sin contaminación, moverán nuestras naves a velocidades super-lumínicas.

El electrón, otra partícula elemental importantísima para todos nosotros y para el Universo mismo, está clasificado en la familia de los Leptones, con una masa en reposo (símbolo m) de notación numérica igual a 9,109 3897 (54) x10-31 Kg y una carga negativa de notación numérica igual a 1, 602 177 33 (49) x10-19 culombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres. La antipartícula del electrón es el positrón cuya existencia fue predicha por el físico Paúl Dirac. El positrón es un hermano Gemelo del electrón, a excepción de la carga que es positiva.

El electrón fue descubierto en 1.897 por el físico Joseph John Thomson (1.856–1.940). El problema de la estructura (si es que la hay) del electrón no está resuelto, nuestras máquinas no tienen la potencia suficiente para poder llegar, en el micromundo, a distancias infinitesimales de ese calibre. Si el electrón se considera como una carga puntual su auto energía es infinita y surgen dificultades de la ecuación de Lorentz-Dirac.

Es posible dar al electrón un tamaño no nulo con un radio лoi llamado el radio clásico del electrón, dado por r0 = e2/ (mc2) = 2,82×10-13 cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luz. Este modelo también tiene problemas como la necesidad de postular las tensiones de Poincaré.

Ahora se cree que los problemas asociados con el electrón deben ser analizados utilizando electrodinámica cuántica en vez de electrodinámica clásica.

Las tres partículas, electrón, muón y tau, son exactas, excepto en sus masas. El muón es 200 veces más masivo que el electrón. La partícula tau es unas 35.600 veces más masiva que el electrón. Los leptones interaccionan por la fuerza electromagnética y la interacción débil. Para cada leptón hay una antipartícula equivalente de carga opuesta (como explicamos ante el positrón es la antipartícula del lepton electrón). Los antineutrinos, como los neutrinos, no tienen carga.

La interacción electromagnética es la responsable de las fuerzas que controlan las estructuras atómicas, las reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero, al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas (probar con imanes como las fuerzas desiguales y contrarias –positiva/negativa– se atraen, mientras que cargas iguales –negativa/negativa o positiva/positiva– se repelen).

Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un campo clásico de fuerzas (Ley de Coulomb) como por el intercambio de fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tienen una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describen (como antes dije) con la electrodinámica cuántica. Esta fuerza tiene una partícula portadora, el fotón.

Todos oímos con frecuencia la palabra “electrónica”, pero, pocos pensamos que estamos hablando de electrones en diseños de dispositivos de control, comunicación, y computación, basándose en el movimiento de los electrones en circuitos que contienen semiconductores, válvulas termoiónicas, resistencias, condensadores y bobinas y, en la electrónica cuántica1 aplicada a la óptica, se han conseguido verdaderas maravillas que han facilitado grandes avances tecnológicos de distintas aplicaciones como la investigación o la medicina y la cirugía, entre otros.

Este pequeño comentario sobre la electrónica y la fotónica que antes habéis leído, demuestra como el conocimiento y el dominio sobre estos dos pequeñísimos objetos, el FOTÓN y el ELECTRÓN, nos ha dado unos beneficios increíbles.

Existen otras partículas aún más diminutas que, en realidad, podríamos decir que son los auténticos ladrillos de la materia, los objetos más pequeños que la conforman: los quarks.

En la antigua Grecia, sabios como Demócrito, Empédocles, Thales de Mileto o Aristóteles, ya sospecharon de la existencia de pequeños objetos que se unían para formar materia. Demócrito de Abdera decía que todo estaba formado por pequeños objetos invisibles e indivisibles a los que llamaba a-tomo o átomos (en griego significa “indivisibles”).

Pasaron muchos años de controversia sobre la existencia de los átomos y, en 1803, el químico y físico británico John Dalton señaló que los compuestos físicos se combinaban para, en ciertas proporciones, formar agrupamiento de átomos para formar unidades llamadas moléculas.

En 1.905, llegó Einstein para dar una de las evidencias físicas más importante de la existencia de los átomos, al señalar que, el fenómeno conocido como movimiento browniano –el movimiento irregular, aleatorio de pequeñas partículas de polvo suspendidas en un líquido– podía ser explicado por el efecto de las colisiones de los átomos del líquido con las partículas de polvo.

Por aquella época ya había sospechas de que los átomos no eran, después de todo, indivisibles. Hacía varios años que J. J.Thomson, de Cambridge, había demostrado la existencia de una partícula material, el electrón, que tenía una masa menor que la milésima parte de la masa del átomo más ligero. Se comprendió que estos electrones debían provenir de los átomos en sí. Y, en 1.911, el físico británico Ernest Rutherford mostró, finalmente, que los átomos de la materia tienen verdaderamente una estructura interna: están formados por un núcleo extremadamente pequeño y con carga positiva, alrededor del cual gira un cierto número de electrones.

En 1.932, un colega de Rutherford, James Chadwick, descubrió también en Cambridge que el núcleo contenía otras partículas, llamadas neutrones, que tenían casi la misma masa del protón que tiene una carga positiva igual en magnitud a la del electrón que es negativa, con lo cual, como todos los núcleos tienen el mismo número de protones que de electrones hay en el átomo, el equilibrio de éste queda así explicado: carga positiva similar a carga negativa= a estabilidad en el átomo.

Durante mucho tiempo se creyó que los protones y neutrones que conforman el núcleo de los átomos, eran partículas “elementales”, pero experimentos en los aceleradores de partículas en los que colisionaban protones con otros protones o con electrones a velocidades cercanas a la de la luz indicaron que, en realidad, estaban formados por partículas aun más pequeñas. Estas partículas fueron llamadas quarks por el físico de Caltech, el norteamericano, Murria Gell – Mann, que ganó el Nobel en 1.969 por su trabajo sobre dichas partículas.

Otro día continuaremos hablando de este interesante tema.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting