Dic
4
Recuerdo de Riemann
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.
Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad general. Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.
Dic
4
AIA-IYA 2009 Año Internacional de la Astronomía
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Hemos podido saber que ese universo está en expansión y que las galaxias se alejan las unas de las otras. Se ha podido deducir que el universo surgió de una explosión a la que llamamos el Big Bang hace ahora 13.500 millones de años. A partir de una singularidad, un punto de energía y densidad infinitas, surgió el universo que, desde entonces, junto con el espacio y el tiempo continúa expandiéndose.
Surgieron los primeros quarks libres que se juntaron para formar protones y neutrones que, a su vez, se unieron y formaron núcleos que, al tener energía positiva, atrajeron a los electrones, de energía negativa, formándose así lo átomos estables.
Los átomos se juntaron para formar moléculas y células y éstas, a su vez, juntas formaron materia. Al principio era todo simetría y existía una sola fuerza que lo regía todo. El universo era totalmente opaco, la temperatura reinante muy alta y todo estaba invadido por una especie de plasma.
Pero la expansión del joven universo continuó imparable. La temperatura fue descendiendo y la simetría se rompió, lo que dio lugar a que donde sólo había una sola fuerza aparecieran cuatro. Las fuerzas nucleares, fuerte y débil, el electromagnetismo y la gravedad surgieron de aquella simetría rota y como hemos dicho antes, surgieron los primeros quarks para, con los electrones, fabricar la materia que está hecha de quarks y leptones. Más tarde, la luz apareció al quedar libres los fotones y donde antes todo era opacidad, surgió la transparencia. Pasaron unos doscientos mil años antes de que nacieran las primeras estrellas y se formaran las galaxias.
Dic
2
¡LA FÍSICA! II
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
E. Rutherford, quien descubrió el núcleo del átomo (entre otras muchas cosas), dijo una vez: “Toda ciencia es o física o coleccionar sellos“. Se refería a la enorme importancia que tiene la física para la ciencia, aunque se le olvidó mencionar que la física está sostenida por las matemáticas que la explica.
Pero, a pesar de todos sus inconvenientes, el Modelo Estándar, desde su implantación, ha cosechado un éxito tras otro, con sus inconvenientes y sus diecinueve parámetros aleatorios, lo cierto es que es lo mejor que tenemos por el momento para explicar las familias de partículas que conforman la materia y cómo actúan las fuerzas de la naturaleza, todas las fuerzas menos la gravedad; esa nos la explica a la perfección y sin fisuras las ecuaciones de Einstein de la relatividad general.
Hace tiempo que los físicos tratan de mejorar el Modelo Estándar con otras teorías más avanzadas y modernas que puedan explicar la materia y el espacio-tiempo con mayor amplitud y, sobre todo, incluyendo la gravedad. Así que retomando la teoría de Kaluza de la quinta dimensión, se propuso la teoría de supergravedad en 1.976 por los físicos Daniel Freedman, Sergio Ferrara y Peter van Nieuwenhuizen, de la Universidad del Estado de Nueva York en Stoney Brook que desarrollaron esta nueva teoría en un espacio de once dimensiones.