sábado, 28 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




AIA-IYA 2009. Un paseo por los alrededores

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Está claro que hemos tenido el privilegio de venir a caer en uno de los planetas que reúne condiciones para la vida. El Universo es tan grandioso que alberga a cientos de miles de millones de galaxias, y el número de las estrellas que las conforman es de tal magnitud que sería una temeridad creer que sólo en el Sistema Solar al que pertenecemos existe la vida inteligente.

Nuestro Sol, estrella de segunda generación, es en realidad una estrella mediana clasificada como G2V, amarilla, con una temperatura efectiva de 5.770 K (tipo espectral G2), formada en su mayor parte de hidrógeno (71% en masa), con algo de helio (27%) y elementos más pesados (2%). Su edad se estima en unos 4.500 millones de años y se encuentra en la mitad de su vida como estrella antes de agotar el combustible nuclear y convertirse en gigante roja que, finalmente, explotará lanzando las capas exteriores al vacío estelar y se contraerá bajo el peso de su propia masa (la gravedad sin ninguna fuerza que la contrarreste) para convertirse en una estrella enana blanca.

En el centro de nuestro Sol la temperatura se calcula próxima a los 15’6 millones de K y la densidad en el núcleo de 148.000 Kg/m3.

El Sol tiene un diámetro de 1.392.530 Km, su masa total es de 1’989×1030 Kg y su velocidad de escape está cifrada en 617’3 Km/s; si no se alcanza no se puede escapar de él.

El Sol fusiona cada segundo 4.654.000 toneladas de hidrógeno en 4.650.000 toneladas de helio. Las 4.000 toneladas restantes son enviadas al espacio en forma de luz y de calor, energía de la que una pequeña parte llega al planeta Tierra, y gracias a ello es posible la vida tal como la conocemos.

Como antes mencioné, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable a contraerse hasta alcanzar el tamaño de la Tierra y volverse tan denso como para evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanza es de 5×108 Kg/m3.

En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.

Para cuando todo eso ocurra, ¿quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.

La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.

Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.

La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.

Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos.

La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.

Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.

Las sondas Voyager revelaron un casquete polar norte en las nubes de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.

Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; Callisto, Amalthea, Leda, etc. en Júpiter; Pan, Atlas, Prometheus, Pandora, etc. en Saturno; Cordelia, Ophelia, Bianca, Ariel, etc. en Urano; Galatea, Larissa, Tritón, Nereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.

De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.

Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.

Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.

La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”.

Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.

La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.

Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.

Aunque (según parece) no existe en la actualidad agua líquida en Marte, hay indicios de que antiguamente tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho.

Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor (grosor), una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.

Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.

Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.

Durante todo el año iremos repasando las maravillas del Universo, y, trendremos la oportunidad de hablar de los fenómenos que en él ocurren, de las fuerzas que están presentes, y, sobre todo, de los fascinantes objetos que lo pueblan, de como se forman a partir de la materia interestelar y de como “viven” y “mueren” con el transcurrir de los siglos.

¡El Universo! Un lugar para vivir y…dejar vivir.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting