Mar
19
AIA-IYA2009, Año Internacional de la Astronomía
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.
Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).
En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.
En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.
Mar
18
¡La teoría de cuerdas! La gran deseada.
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
La segunda revolución y la Teoría M
Las cosas continuaron de esta forma hasta que ya en la década de los noventa se produjo la llamada segunda revolución de las cuerdas (la primera fue la de los ochenta). Este nuevo impulso de la teoría vino caracterizado por una serie de avances que cambiaron radicalmente nuestra imagen de la misma.
El primero de estos avances fue el descubrimiento de las llamadas dualidades entre diferentes teorías de cuerdas. La más simple de ellas es la llamada dualidad T. En una teoría de cuerdas en la que una de las dimensiones está compactificada en un círculo de radio R, aparte de los modos Kaluza-Klein, tenemos también los estados correspondientes a que la cuerda esté enrollada n veces en torno a este círculo (modos de enrollamiento). Entonces es muy fácil comprobar que existe otro radio de compactificación R’ tal que el espectro de la cuerda es exactamente el mismo que el original, a condición de intercambiar los papeles de los modos Kaluza-Klein y los modos de enrollamiento. Además se puede probar que esta equivalencia se satisface a todos los órdenes de la teoría de perturbaciones.
Otra dualidad, la llamada dualidad S, permite relacionar el régimen de interacción débil (perturbativo) de una cierta teoría de cuerdas con régimen de interacción fuerte (no perturbativo) de otra. Esta dualidad abre por tanto la puerta al estudio de la dinámica de las cuerdas más allá de la teoría de perturbaciones.
Mar
18
¡La grandeza de Einstein!
por Emilio Silvera ~ Clasificado en Física Relativista ~ Comments (1)
Las paradojas
Analizar el mismo problema desde distintas perspectivas puede resultar esclarecedor; ilumina nuestros conocimientos, que ante las diferentes respuestas puede ver la verdadera, que en la mayoría de los casos viene a ser lo que ocurre realmente en la Naturaleza, aunque no siempre estamos capacitados para entenderlo.
Los avances de la ciencia natural pueden verse en buena parte como un alejamiento progresivo de la intuición vulgar y del realismo ingenuo. El conocimiento de los fenómenos de la Naturaleza nos llevó a un estadio de racionalidad y entendimiento coherente de los hechos que ocurrían a nuestro alrededor, de manera tal que se cumplía el objetivo de la ciencia, comenzando por la observación elemental a la que seguía la experimentación (observación provocada) y culminando en una primera parte o estadio con el enunciado de leyes empíricas.
Estas observaciones primarias tienen lugar a través de nuestras categorías sensoriales, que se han forjado, pulido y refinado a lo largo de la evolución de nuestros sentidos, como el tacto, la vista, el oído, etc.
Mar
17
Final de “Los Misterios de la Tierra”
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
El metabolismo heterótrofo
Los seres autótrofos siguen dos vías diferentes para transformar la biomasa que ingieren en los compuestos complejos de los que se componen sus tejidos. Esta transformación puede ser mediante fermentación anaeróbica o a través de respiración aeróbica. La primera vía se restringe a las células procariotas simples, como las fermentadoras, las bacterias metanogénicas y los hongos Ascomycota responsables de la fermentación del etanol (alcohol etílico). La segunda vía se hizo posible a partir del momento en que la cantidad de oxígeno atmosférico, generado por los vegetales, alcanzó un nivel suficientemente alto como para que algunos seres procariotes pudieran utilizar la respiración aeróbica para generar trifosfato de adenosina más eficientemente que por fermentación. Desde un punto de vista energético, la oxidación es claramente ventajosa. Así, por cada mol de glucosa se liberan 197 KJ por fermentación en ácido láctico, 232 KJ por fermentación alcohólica y 2’87 MJ por la oxidación completa, lo que representa para esta última una ganancia que está comprendida entre 12 y 14 veces.
Los nutrientes necesarios para el metabolismo de tipo heterótrofo proceden de la digestión de los tejidos vegetales o de otros heterótrofos. En el metabolismo heterótrofo hay notables regularidades orgánicas. Entre ellas destaca claramente el hecho de que al representar en un gráfico logarítmico la tasa metabólica basal (TMB), – metabolismo mínimo cuando el animal se encuentra en reposo absoluto – frente al peso, los resultados relativos a los animales comprendidos entre el ratón y el elefante se dispongan a lo largo de una línea recta.
Mar
16
Los Bosques
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Los bosques almacenan la mayor parte de la fitomasa terrestre, entre tres cuartos y nueve décimos del total. La razón de tanta incertidumbre en esta estimación se debe a la rápida deforestación tropical, la falta de una clasificación uniforme de los bosques y a su alta variabilidad.
Los bosques cerrados (en contraste con los bosques abiertos) se pueden definir como ecosistemas cuya cubierta ocupa entre el 20 y el 40 por ciento del suelo. Nuestro escaso conocimiento de los bosques tropicales implica que tengamos que extrapolar almacenamientos típicos de un número inadecuado de terrenos bien estudiados. El mejor inventario disponible establece que, a principios de los noventa, el área total de bosques cerrados era de aproximadamente 25 millones de Km2, dos quintas partes de los cuales estaban situados en los trópicos. La superficie total de todos los bosques es aproximadamente el doble; almacenan cerca de nueve décimas partes de la fitomasa del planeta y están casi equitativamente repartidos entre los biomas tropicales, templaros y boreales.
En el bosque tropical se encuentra el máximo almacenamiento medio de fitomasa. Desde el aire, las copas de los árboles muestran una decepcionante uniformidad, vistas desde aviones a reacción y de un rojo intenso en las imágenes con falso color de los satélites. Desde el suelo umbrío, frecuentemente con escasa maleza, se elevan los troncos de los árboles, unos rectos, otros delgados, algunos enormes y también apuntalados; luego un revoltijo de ramas superpuestas, lianas y epifitos. Un claro del bosque o la orilla de una corriente muestran la estructura en capas de esta selva.