lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




RIEMANN

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania.  Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante.  Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.  La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas.  La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias.  En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa.  Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del Universo.  El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios demás dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico.  Era huraño, solitario y sufría crisis nerviosas.  De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde pastor  para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte.  La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público.  Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas.  Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura.  Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado.  El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números.  Riemann devoró el libro en seis días.

Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos.   Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo.  En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides.  Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita.  Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud.  Un plano tiene dos dimensiones: longitud y anchura.  Un sólido tiene tres dimensiones: longitud, anchura y altura.   Y allí se detiene.  Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible.  En sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.”  Además, en el año 150 d.c., el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen).  Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”.  Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta.  Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas.  Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.

Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él.  Claro que, es una herramienta para utilizar en un mundo tridimensional.

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas.  Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente las supercuerdas.

Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio.  Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general.  Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2.  La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

formas-de-universos

Pero volvamos al trabajo de Riemann.  Su propósito era introducir un nuevo objeto en las matemáticas que le capacitase para describir todas las superficies, por complicadas que fueran.  Esto le condujo inevitablemente a reintroducir el concepto de campo de Faraday.

El campo de Faraday, recordémoslo, era como un campo de granjero que ocupa una región de un espacio bidimensional.  El campo de Faraday ocupa una región de un espacio tridimensional; a cualquier punto del espacio le asignamos una colección de números que describe la fuerza eléctrica o magnética en dicho punto.  La idea de Riemann consistía en introducir una colección de números en cada punto del espacio que descubriera cuánto estaba torcido o curvado.

Por ejemplo, para una superficie bidimensional ordinaria, Riemann introdujo una colección de tres números en cada punto que describe completamente la curvatura de dicha superficie.  Riemann descubrió que en cuatro dimensiones espaciales se necesita una colección de diez números en cada punto del espacio para describir sus propiedades.  Por muy retorcido o distorsionado que esté el espacio, esta colección de diez números en cada punto es suficiente para codificar toda la información sobre dicho espacio.  Hoy, esta colección de números se denomina el Tensor métrico de Riemann.  Hablando crudamente, cuanto mayor es el valor del tensor métrico, mayor es el arrugamiento de la superficie, digamos de una hoja de papel, y, el tensor métrico nos da un medio sencillo para medir la curvatura en cada punto.  Si alisamos completamente la hoja arrugada, entonces recuperamos la fórmula de Pitágoras.

El tensor métrico de Riemann le permitió erigir un potente aparato para describir espacios de cualquier dimensión con curvatura arbitraría.  Para su sorpresa, encontró que todos estos espacios están bien definidos y son autoconsistentes.  Previamente, se pensaba que aparecerían terribles contradicciones al investigar el mundo prohibido de dimensiones más altas.  Riemann no encontró ninguna.  De hecho, resultaba casi trivial extender su trabajo a un espacio N-dimensional.  El tensor métrico se parecía ahora a un tablero de Ajedrez de N x N casillas.

matriz

El tensor de Riemann contiene toda la información necesaria para poder describir un espacio curvo en N-dimensiones.  Se necesita dieciséis números para describir el tensor métrico en un espacio tetradimensional.  Estos números pueden disponerse en una matriz cuadrada (seis de dichos números son realmente redundantes; de modo que el tensor métrico tiene diez números independientes).

De hecho, en las nuevas teorías de supercuerdas, planteadas en diez y veintiséis dimensiones, tendríamos que hablar del supertensor métrico de Riemann y de cientos de componentes.

corte-riemann

Gráfico: Un corte de Riemann, con dos hojas conectadas a lo largo de una línea.  Si caminamos alrededor del corte, permanecemos dentro del mismo espacio.  Pero si atravesamos el corte, pasamos de una hoja a la continua.  Esta es una superficie múltiplemente conexa

De la lección de Riemann se deduce que, en espacios multidimensionales se crea el principio de que el espacio múltiple (de más dimensiones) unifica las leyes de la naturaleza encajándolas en el tensor métrico como piezas de un rompecabezas N-dimensional.

Riemann anticipó otro desarrollo de la física; fue uno de los primeros en discutir espacios múltiples y conexos, o agujeros de gusano.

agujero-de-gusano

Topológicamente hablando, el dibujo adjunto es equivalente a lo que sería un agujero de Gusano con boca de entrada y de salida en regiones que nos llevarían a otro tiempo (Así lo aseguró en 1.988, el físico Kip Thorne, del MIT (Instituto Tecnológico de Massachuse en California).

El legado de Riemann (a pesar de su muerte prematura) fue extenso y en general muy valioso.  En 1958, anunció incluso que finalmente había logrado una descripción unificada de la luz y la electricidad.  Escribió: “Estoy completamente convencido de que mi teoría es la correcta, y de que en pocos años será reconocida como tal”.Aunque su tensor métrico le proporcionó un medio poderoso de describir cualquier espacio curvo en cualquier dimensión, él no conocía las ecuaciones exactas a que obedecía el tensor métrico; es decir, no sabía que es lo que hacía que la hoja se arrugase, eso lo vio seis décadas más tarde Einstein que se dio cuenta de que, en presencia de grandes masas, tales como planetas o estrellas -entre otros, el espacio se “arruga” o “distorsiona”, se curva.  Sin embargo Einstein, sabía el origen de las arrugas y le faltaba el tensor métrico que, finalmente, le permitió regalar al mundo su magnifica teoría.

El trabajo de Riemann, al utilizar el espacio multidimensional, logró simplificar las leyes de la naturaleza, es decir, para el, la electricidad y el magnetismo y también la Gravedad eran simplemente los efectos causados por el arrugamiento o distorsión del hiperespacio.

emilio silvera

 

  1. 1
    Ramon Marquès
    el 13 de abril del 2009 a las 20:25

    Hola Emilio:
    ¿Por qué se arruga el espacio en presencia de masa?. Esto es lo que no dijo Einstein, y sí que dice mi cosmovisión. La interacción del complejo vibratoro de las partículas con el espacio vibratorio en expansión da lugar a la gravedad,la masa y la inercia, y a la deformación del espacio. En la interacción intervienen dos fuerzas en sentido contrario, siendo por consiguiente lógico que haya deformación del espacio, este espacio vibratorio en expansión.
    Emilio, deseo que hayas pasado unas felices Pascuas y recibe un abrazo de tu amigo. Ramon Marquès

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting