May
8
Se necesitan nuevas teorías
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.
Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante. En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.
Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.
May
8
Breve recorrido
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Sobre el modelo estándar de la física de partículas. Los orígenes de la moderna física de partículas.
La ecuación de Dirac para el electrón supuso un momento crucial para la física en muchos aspectos. En 1.928, cuando Dirac propuso su ecuación, las únicas partículas conocidas para la ciencia eran los electrones, los protones y los fotones. Las ecuaciones de Maxwell libres describen el fotón (como fue previsto por Einstein en 1.905) en un primer trabajo cuyas ideas fueron desarrolladas por Einstein, Bose y otros, hasta que en 1.927 Jordan y Pauli proporcionaron un esquema matemático global para describir los fotones libres de acuerdo con la teoría de Maxwell para el campo libre cuantizado.
Además, tanto el protón como el electrón, parecían estar muy bien descritos por las ecuaciones de Dirac. La interacción electromagnética, que describe la influencia de los fotones sobre los electrones y los protones, estaba excepcionalmente tratada mediante la receta de Dirac, a saber, mediante la idea gauge (tal como fue introducida básicamente por Weyl en 1.918), y el propio Dirac ya había empezado a construir el 1.927 una formulación de una teoría completa de los electrones (o protones) en interacción con protones.
Así pues, todas las herramientas básicas parecían estar más o menos a punto para la descripción de todas las partículas conocidas de la naturaleza, junto con sus más destacadas interacciones.
May
8
Muy interesante 12/30
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
¿De dónde vienen los rayos cósmicos más energéticos?
Las observaciones del Observatorio de Rayos Cósmicos Pierre Auger, en Argentina, en 2007 apuntan a que una de las fuentes de estos rayos es el núcleo activo de las galaxias, o sea los agujeros negros. El 90% de los rayos cósmicos son protones, el 9% son núcleos de helio, mientras que el 1% restante son electrones. Gracias a la baja densidad de la materia del espacio, estas partículas logran viajar en una pieza, hasta que colisionan con otras partículas en nuestra atmósfera, causando chubascos cuya energía y composición se mide en varios observatorios astronómicos.
Texto extraído de Muy interesante