miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los aceleradores de partículas ¡qué maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

lhc_banner

En 1.949, el físico francés Louis de Broglie, que ganó el premio Nobel, propuso construir un laboratorio europeo de física de partículas. Su idea caló hondo en la comunidad internacional, y tres años más tarde, 11 países europeos dieron el visto bueno y el dinero para construir el CERN, inaugurado en Ginebra en 1.954, y al que tanto le debe la física.

Los aceleradores de partículas son un gran invento que ha permitido comprobar (hasta donde se ha podido, al menos) la estructura del átomo. En el acelerador del Fermilab, por ejemplo, un detector de tres pisos de altura que ha costado unos ochenta millones de dólares capta electrónicamente los “restos” de la colisión entre un protón y un antiprotón. Aquí la prueba consiste en que decenas de miles de sensores generen un impulso eléctrico cuando pasa una partícula. Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

Leer más

¿Cuándo sabremos lo que es la Luz?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los físicos se vieron durante mucho tiempo turbados por el hecho de que, a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo. En realidad, los electrones no eran igualmente deficitarios. Emergían con un amplio espectro de energías, y el máximo (corregido por muy pocos electrones) era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menos grado. Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas. En ese caso, ¿qué era erróneo en la emisión de partículas beta?, ¿qué había sucedido con la energía perdida?

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y hacia 1.936 Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas. En 1.931 Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida. Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida. Esa misteriosa segunda partícula tenía propiedades bastante extrañas; no poseía carga ni masa. Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía. A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y liberaba un electrón que, como en la decadencia beta, portaba insuficientes cantidades de energía. Enrico Fermi dio a esta partícula putativa el nombre de neutrino, palabra italiana que significa “pequeño neutro”.

Leer más

Cosas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro universo: los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contra), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce  una ondulación en la curvatura del espacio-tiempo que viaja a la velocidad de la luz transportada por los gravitones.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transportan de este mundo material nuestro a otro fascinante donde residen las maravillas del universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, long_planck = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal como lo conocemos, deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío; esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

Leer más

Muy interesante 26/30

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Hay vida extraterrestre?

Hasta el momento ninguna sonda espacial o telescopio ha hallado rastros concretos de vida tal como la conocemos en la Tierra. El debate sobre la vida extraterrestre está dividido entre quienes piensan que la vida en la Tierra es sumamente compleja, por lo que es poco probable que exista algo semejante a nosotros en otro planeta, y aquellos que señalan que los procesos y elementos químicos involucrados en las criaturas terrestres son muy comunes en todo el universo, y que lo único que hay que buscar son las condiciones adecuadas. Para estos últimos, es bastante probable que exista vida similar a la nuestra en otros mundos, planetas extrasolares en cuya búsqueda nos hallamos enfrascados.

Texto extraído de Muy interesante