domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los aceleradores de partículas ¡qué maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

lhc_banner

En 1.949, el físico francés Louis de Broglie, que ganó el premio Nobel, propuso construir un laboratorio europeo de física de partículas. Su idea caló hondo en la comunidad internacional, y tres años más tarde, 11 países europeos dieron el visto bueno y el dinero para construir el CERN, inaugurado en Ginebra en 1.954, y al que tanto le debe la física.

Los aceleradores de partículas son un gran invento que ha permitido comprobar (hasta donde se ha podido, al menos) la estructura del átomo. En el acelerador del Fermilab, por ejemplo, un detector de tres pisos de altura que ha costado unos ochenta millones de dólares capta electrónicamente los “restos” de la colisión entre un protón y un antiprotón. Aquí la prueba consiste en que decenas de miles de sensores generen un impulso eléctrico cuando pasa una partícula. Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación, es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto, que incluye en cada experimento los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías el resultado finalmente obtenido. Es un proceso largo y muy complejo; la consecuencia de muchos años de investigación de muchos equipos diferentes.

Yo puedo visualizar la estructura interna de un átomo. Puedo hacer que me vengan imágenes mentales de nebulosas de “presencia” de electrón alrededor de la minúscula mota del núcleo que atrae esa bruma de la nube electrónica hacia sí. Puedo ver los átomos, los protones y los neutrones, y en su interior, los diminutos quarks enfangados en un mar de neutrones. Claro que todo eso es posible por el hecho de que dicha imagen me es muy familiar. Creo que cada uno construirá sus propias imágenes conforme él las vea a partir de las ecuaciones o bien de cómo las formó en su mente a partir de sus lecturas o explicaciones oídas en charlas científicas.

Cuando entraron en escena David Politrer, de Harvard, y David Gross y Frank Wilczek, de Pinceton, el panorama de lo que ocurría en el interior del núcleo se aclaró bastante. Ellos, descubrieron algo que llamaron libertad asintótica. Asintótico significa, burdamente, “que se acerca cada vez más, pero no toca nunca”. La interacción fuerte se debilita más y más a medida que un quark se aproxima a otro. Esto significa, paradójicamente, que cuando los quarks están muy juntos se portan casi como si fuesen libres; pero cuando se apartan, las fuerzas se hacen efectivamente mayores. Las distancias cortas suponen energías altas, así que la interacción fuerte se debilita a altas energías. Esto es justo lo contrario de lo que pasa con la fuerza eléctrica. Aún más importante era que la interacción fuerte necesitase una partícula mensajera, como las otras fuerzas, y en alguna parte le dieron al mensajero el nombre de gluón (del inglés glue, pegamento).

A todo esto, llegó Murray Gell-Mann con sus quarks para completar el panorama. Adjudicó a estas diminutas partículas color y sabor (nada que ver con el gusto y los colores reales) y llegó la teoría denominada cromodinámica cuántica. Todo aquello dio mucho que hablar y mucho trabajo a los teóricos y experimentadores, y al entrar en los años ochenta, se había dado ya con todas las partículas de la materia (los quarks y los leptones), y teníamos las partículas mensajeras, o bosones gauge, de las tres fuerzas, a excepción de la gravedad.

MATERIA

Primera generación

Segunda generación

Tercera generación

u

c

t

d

s

b

Son los quarks up, down, charmed, strange, top y bottom.

Los leptons son:

υe

υμ

υτ

e

μ

τ

FUERZAS

Los bosones gauge:

Fotón

Electromagnetismo

W+, W, Z0

Interacción débil

Ocho gluones

Interacción fuerte

La familia de los leptones está compuesta por el electrón, muón y tau con sus correspondientes neutrinos. Así quedó prácticamente completo el llamado modelo estándar que describe las partículas que forman la materia conocida y las fuerzas que intervienen e interaccionan con ellas. La gravedad quedó plasmada en la relatividad general de Einstein.

¿Por qué es incompleto el modelo estándar? Una carencia es que no se haya visto todavía el quark top; otra, la ausencia de una de las cuatro fuerzas fundamentales, la gravedad. Otro defecto estético es que no es lo bastante simple; debería parecerse más a la tierra, aire, fuego y agua de Empédocles. Hay demasiados parámetros y demasiados controles que ajustar. Necesitamos una nueva teoría que sea menos complicada, más sencilla y bella, sin vericuetos intrincados que salvar, con la limpieza y serena majestad de la teoría de la gravedad que, con enorme simpleza y aplicando los principios naturales, trata los temas más profundos del universo. Esperemos que continúe desarrollándose la teoría de cuerdas y que, como parece, incluya todas las fuerzas, todas las partículas y, en fin, todos los parámetros que dan sentido al universo.

El modelo estándar: Historia resumida

Autores

Fechas

Partículas

Fuerza

Nota

Comentario

Tales (milesio)

600 a.C.

Agua

No se menciona

8

Fue el primero en explicar el mundo mediante causas naturales. Lógica en lugar de mito.

Empédocles (agrigento)

460 a.C.

Tierra, agua, aire y fuego

Amor y discordia

9

Aportó la idea de que hay múltiples partículas que se combinan para formar toda la materia.

Demócrito (Abdera)

430 a.C.

El átomo indivisible e invisible, o a-tomo

Movimiento violento constante

10

Su modelo requería demasiadas partículas, cada una con una forma diferente, pero su idea básica de que hay un átomo que no puede ser partido sigue siendo la definición básica de partícula elemental.

Isaac Newton (inglés)

1.687

Átomos duros con masa, impenetrables

Gravedad (cosmos); fuerzas desconocidas (átomos)

7

Le gustaban los átomos pero no hizo que su causa avanzase. Su gravedad fue un dolor de cabeza para los peces gordos en la década de 1.990

Roger J. Boscovich (dálmata)

1.760

“Puntos de fuerza” indivisibles y sin forma o dimensión

Fuerzas atractivas y repulsivas que actúan entre puntos

9

Su teoría era incompleta, limitada, pero la idea de que hay partículas de “radio nulo”, puntuales, que crean “campos de fuerza”, es esencial en la física moderna.

Michael Faraday (inglés)

1.820

Cargas eléctricas

Electromagnetismo

8’5

Aplicó el atomismo a la electricidad al conjeturar que las corrientes estaban formadas por “corpúsculos de electricidad”, los electrones.

Dimitri Mendeleev (siberiano)

1.870

Más de 50 átomos dispuestos en la tabla periódica de los elementos

No hace cábalas sobre las fuerzas

8’5

Tomó la idea de Dalton y organizó todos los elementos químicos conocidos. En su tabla periódica apuntaba con claridad una estructura más profunda y significativa.

Ernest Rutherford (neozelandés)

1.911

Dos partículas; núcleo y electrón

La fuerza nuclear fuerte más el electromagnetismo. La gravedad

9’5

Al descubrir el núcleo, reveló una nueva simplicidad dentro de todos los átomos de Dalton. El experimentador por excelencia.

Bjorken, Fermi, Friedman, Gell-Mann, Glasgow, Kennedy, Lederman, Peri, Richter, Schwartz, Steinberger, Taylor, Ting, más un reparto de miles.

1.992

Seis quarks y seis leptones, más sus antipartículas. Hay tres colores de quarks

El electromagnetismo, la interacción fuerte y débil: doce partículas que llevan las fuerzas más la gravedad.

?

Demócrito de Abdera ríe.

A todo esto y como he dicho, el quark top está perdido y el neutrino tau no se ha detectado directamente, y muchos de los números que nos hacen falta conocer los tenemos de forma imprecisa. Por ejemplo, no sabemos si los neutrinos tienen alguna masa en reposo.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar las coherencia matemática del modelo estándar. La idea de Higgs y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes. Parece, con tantos parámetros imprecisos (19), que el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “supersimetría”, “supercuerdas”, “teoría M” o, en último caso, “teoría de todo” o “gran teoría unificada”.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman?; ¿por qué no se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos ni sabemos, o no nos es posible intuir en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron en la longitud de Planck las dimensiones que no podíamos ver; ¡problema solucionado! ¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y a los teóricos se les regaló una herramienta maravillosa: el hiperespacio; todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí sí es posible encontrar esa soñada teoría de la gravedad cuántica.

Así que las teorías se han embarcado a la búsqueda de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que mencioné en páginas anteriores.

La verdad es que la teoría que ahora tenemos, el modelo estándar, concuerda de manera exacta con todos los datos a bajar energías y contesta cosas sin sentido a altas energías. ¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que carecen de ella, disfrazando así la verdadera simetría del mundo. Cuando su autor lanzó la idea al mundo, resultó además de nueva, muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resultó ser complejo, lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones. Resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún; los quarks que estaban instalados en nubes de otras partículas llamadas gluones, y ahora queremos continuar profundizando, sospechando que después de los quarks puede haber algo más.

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes, es decir, que si miramos a las estrellas en una noche clara, estamos mirando el campo de Higgs. Las partículas influidas por este campo toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado: del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquirirá energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra. Como E = mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein: la masa, m, tiene en realidad dos partes; una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c), o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC), pero el problema es irritante: ¿por qué sólo esas masas ­­- las masas de los W+, W, Z0, y el up, down, encanto, estraño, top y bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van desde la del electrón (0’0005 GeV) a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnética y débil. En la unidad hay cuatro partículas mensajeras sin masa – los W+, W, Z0 y el fotón – que llevan la fuerza electrodébil. Además está el campo de Higgs, y rápidamente, los W y Z absorben la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos), y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen las teorías. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil, y las relajadas sonrisas de los físicos teóricos nos recuerdan que Hooft y Veltman dejaron sentado que la teoría entera está libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista de cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y segura nos dice “¡Higgs!”. Durante más de sesenta años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo de Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que empleam cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

Una cosa más; hemos hablado de los bosones gauge y de su espín de una unidad. Hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos donde quiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” (sin dirección) por esa razón.

La interacción débil, recordaréis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón de Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas: ¿cuáles son las propiedades de las partículas de Higgs? y, lo que es más importante, ¿cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión del LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas o sólo las hace incrementarse? ¿Cómo podemos saber más al respecto? Cómo es su partícula, nos cabe esperar que la veremos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del universo, añadiendo pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Éstas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuado que las partículas y la cosmología pintan juntas de un universo primitivo puro y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10-5 grados Kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así, por ejemplo, antes del Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El universo se expande y se enfría, y entonces viene el Higgs (que “engorda” los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que les hiciera parecer que tienen mucha masa.  Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas formas, es tanta la ignorancia que tenemos sobre el origen de la masa que nos agarramos como a un clavo ardiendo, en este caso, a la partícula de Higgs, que algunos han llegado a llamar “la partícula divina”.

¡Ya veremos en qué termina todo esto!

emilio silvera


Paseo en 3D por las instalaciones del LHC

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting