Ago
31
¿Cuándo conoceremos el Universo?
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Me hace gracia ver y escuchar como “doctos” licenciados dicen que ellos conocen lo que es el Universo, por ejemplo, o lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este mo0delo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones.
No siempre este modelo científico es una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.
Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.
Ago
31
¿Se habrá conseguido la meta del AIA 2009?
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
El Año Internacional de la Astronomía, se ha impuesto, entre sus muchos objetivos, el de llevar el Universo a todos. Explicar lo que es y lo que en él ocurre. Generalmente, la gente sencilla no sabe, en realidad, como se forman y nacen las estrellas, como viven y al final de sus “vidas” que es lo que ocurre, en que se transforman y que ocurre con su material.
Si preguntamos por el significado del Big Bang, la expansión del universo, cómo nacen y mueren las estrellas, qué es una singularidad, a qué se refiere la libertad asintótica de los quarks, qué son los nucleones, qué significan las constantes universales, qué es la mecánica quántica, el modelo estándar, la relatividad general, el significado de E = mc2, el principio de incertidumbre, la función de onda de Schrödinger, la exclusión de Pauli, el cuanto de acción, h, o el límite, la energía o tiempo de Planck…, cualquiera de estas cuestiones, todas tan importantes, serán desconocidas para el 99’99% de los encuestados. ¡Una auténtica calamidad!
Esa es la penosa realidad en la que estamos inmersos.
Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.
Ago
31
Agujeros Negros gigantes
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.
Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).
En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.
En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.
Normalmente pensamos que la fricción es una pobre fuente de calor. Sin embargo, puesto que la energía gravitatoria es enorme, mucho mayor que la energía nuclear, la fricción puede realizar fácilmente la tarea de calentar el disco y hacer que brille con un brillo 100 veces mayor que la galaxia más luminosa.
¿Cómo puede un agujero negro actuar como un giróscopo? James Bardeen y Jacobus Petterson de la Universidad de Yale comprendieron la respuesta en 1975: si el agujero negro gira rápidamente, entonces se comporta precisamente como un giróscopo. La dirección del eje del giro permanece siempre firme fijo e inalterado, y el remolino creado por el giro en el espacio próximo al agujero permanece siempre firmemente orientado en la misma dirección.
Bardeen y Petterson demostraron mediante un cálculo matemático que este remolino en el espacio próximo al agujero debe agarrar la parte interna del disco de acreción y mantenerlo firmemente en el plano ecuatorial del agujero; y debe hacerlo así independientemente de cómo esté orientado el disco lejos del agujero.
A medida que se captura nuevo gas del espacio interestelar en la parte del disco distante del agujero, el gas puede cambiar la dirección del disco en dicha región, pero nunca puede cambiar la orientación del disco cerca del agujero. La acción giroscópica del agujero lo impide. Cerca del agujero el disco sigue y permanece siempre en el plano ecuatorial del mismo.
Sin la solución de Kerr a la ecuación de campo de Einstein, esta acción giroscópica hubiera sido desconocida y habría sido imposible explicar los cuásares. Con la solución de Kerr a mano, los astrofísicos de mitad de los años setenta estaban llegando a una explicación clara y elegante. Por primera vez, el concepto de un agujero negro como un cuerpo dinámico, más que un simple “agujero en el espacio”, estaba jugando un papel central en la explicación de las observaciones de los astrónomos.
¿Qué intensidad tendrá el remolino del espacio cerca de un agujero gigante? En otras palabras, ¿cuál es la velocidad de rotación de los agujeros gigantes? James Bardeen dedujo la respuesta: demostró matemáticamente que la acreción de gas por el agujero debería hacer que el agujero girase cada vez más rápido. Cuando el agujero hubiera engullido suficiente gas en espiral para duplicar su masa, el agujero debería estar girando casi a su velocidad máxima posible, la velocidad más allá de la cual las fuerzas centrífugas impiden cualquier aceleración adicional. De este modo, los agujeros negros gigantes deberían tener típicamente momentos angulares próximos a su valor máximo.
¿Cómo puede un agujero negro y su Disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica para el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:
El Agujero es atravesado por la línea de campo magnético. Cuando el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma hacia arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.
Este proceso es muy interesante porque la energía que va a los chorros procede de la enorme energía rotacional del agujero (esto debería parecer obvio porque es la rotación del agujero la que provoca el remolino en el espacio, y es el remolino del espacio el que provoca la rotación de las líneas de campo y, a su vez, es la rotación de las líneas de campo la que desvía el plasma hacia fuera.)
¿Cómo es posible, en este proceso Blandford-Znajet, que el horizonte del agujero sea atravesado por líneas de campo magnético? tales líneas de campo serían una forma de “pelo” que puede convertirse en radiación electromagnética y radiada hacia fuera, y por consiguiente, según el teorema de Price, deben ser radiadas hacia fuera. En realidad, el teorema de Price solo es correcto si el agujero está aislado, lejos de cualquier otro objeto.
Pero el agujero que estamos discutiendo no está aislado, está rodeado de un disco de acreción. Así que las líneas de campo que surgen del agujero, del hemisferio norte y las que salen del hemisferio sur se doblarán para empalmarse y ser una continuación una de otra, y la única forma de que estas líneas puedan entonces escapar es abriendo su camino a través del gas caliente del disco de acreción. Pero el gas caliente no permitirá que las líneas de campo lo atraviesen; las confina firmemente en la región del espacio en la cara interna del disco, y puesto que la mayor parte de dicha región está ocupada por el agujero, la mayoría de las líneas de campo confinadas atravesarán el agujero.
¿De donde proceden esas líneas de campo magnético? Del propio disco.
Cualquier gas en el Universo está magnetizado, al menos un poco, y el gas del disco no es una excepción. Conforme el agujero acrece, poco a poco, gas del disco, el gas lleva con él líneas de campo magnético. Cada pequeña cantidad de gas que se aproxima al agujero arrastra sus líneas de campo magnético y, al cruzar el horizonte, deja las líneas de campo detrás, sobresaliendo del horizonte y enroscándose. Estas líneas de campo enroscadas, firmemente confinadas por el disco circundante, extraerían entonces la energía rotacional del agujero mediante el proceso de Blandford-Znajet.
Los métodos de producir chorros (orificios en una nube de gas, viento de un embudo, líneas de campo arremolinadas ancladas en el disco, y el proceso Blandford-Znajet) actúan probablemente, en grados diversos, en los cuásares, en las radiogalaxias y en los núcleos característicos de algunos otros tipos de galaxias (núcleos que se denominan núcleos galácticos activos).
Si los cuásares y las radiogalaxias están activados por el mismo tipo de máquina de agujero negro, ¿qué hace que parezcan tan diferentes? ¿Por qué la luz de un cuásar aparece como si procediera de un objeto similar a una estrella, intensamente luminoso y de un tamaño de 1 mes-luz o menos, mientras que la luz de radiogalaxias procede de un agregado de estrellas similar a la Vía Láctea, de un tamaño de 100.000 años-luz?
Parece casi seguro que los cuásares no son diferentes de las radiogalaxias; sus máquinas centrales también están rodeadas de una galaxia se estrellas de un tamaño de 100.000 a.l. Sin embargo, en un cuásar el agujero negro central está alimentado a un ritmo especialmente elevado por el gas de acreción y, consiguientemente, el calentamiento friccional del disco es también elevado. Este calentamiento del disco hace que brille tan fuertemente que su brillo óptico es cientos o miles de veces que el de todas las estrellas de la galaxia circundante juntas.
Los astrónomos, cegados por el brillo del disco, no pueden ver las estrellas de la galaxia, y por ello el objeto parece “cuasi estelar” (es decir, similar a una estrella; como un minúsculo punto luminoso intenso) en lugar de parecer una galaxia.
La región más interna del disco es tan caliente que emite rayos X; un poco más lejos el disco está más frío y emite radiación ultravioleta; aún más lejos está más frío todavía y emite radiación óptica (luz); en su región mas externa está incluso más frío y emite radiación infrarroja. La región emisora de luz tiene típicamente un tamaño de aproximadamente un año-luz, aunque en algunos casos, tales como 3C273, puede ser de un mes luz o más pequeña.
Estas explicaciones para los cuásares y las radiogalaxias basadas en agujeros negros son tan satisfactorias que es tentador asegurar que deben ser correctas.
emilio silvera
Ago
30
Recordemos a Riemann
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania. Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.
Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del Universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.
Ago
29
Cosas de la Relatividad
por Emilio Silvera ~ Clasificado en Física Relativista ~ Comments (0)
Luz, Velocidad, Tiempo y, relatividad
Aunque muchas veces comentado, trataré de nuevo el tema de la velocidad de la luz y sus implicaciones reales en el transcurso del tiempo. La relatividad del movimiento es, por una parte, la clave para comprender la teoría de Einstein, y al mismo tiempo una fuente potencial de confusión.
No es nada fácil dar una definición del tiempo, los intentos de hacerlo terminar a menudo dando vueltas y vueltas hasta llegar al punto de partida. Sin ir más lejos, en mi último trabajo (09/09/06) de título “Pasado, Presente y Futuro. Una ilusión llamada Tiempo”, intenté explicar lo que es el tiempo y hablé de él desde distintos ángulos y bajo distintos puntos de mira. Durante muchas páginas trate el tiempo y me remonte hasta el Big Bang como fuente de su nacimiento, allí, junto a su hermano el espacio, nació el tiempo.
Hablamos del reloj atómico de cesio-33, de la velocidad de la luz, de la fórmula matemática que explicaba la dilatación del tiempo a través de la velocidad, del tiempo de Planck, de las transformaciones de Lorentz, tiempo terrestre, tiempo dinámico, tiempo bariónico, tiempo estándar, tiempo universal, etc.