jueves, 28 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Que fuerzas rigen el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las fuerzas fundamentales

Tipo de Fuerza

Alcance

en m

Fuerza

relativa

Función

Nuclear fuerte <3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil < 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo.  Cuando trató de desarrollar este principio, Einstein tuvo dificultades, no encontraba la manera de expresarlo con la formulación matemática adecuada.  Pidió ayuda a su amigo Marcel Grossmann, matemático, quien sabiendo de las necesidades exactas de Einstein, le envió la copia de una conferencia que dio un tal Riemann, unos sesenta años antes.

Leer más

¿Podremos algún día conocer la Naturaleza?

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Está muy claro que, nuestro mundo es como es, debido a una serie de parámetros que, poco a poco, hemos ido identificando y hemos denominado Constantes de la Naturaleza.  Esta colección de números misteriosos son los culpables, los responsables, de que nuestro Universo sea tal como lo conocemos que, a pesar de la concatenación de movimientos caóticamente impredecibles de los átomos y las moléculas, nuestra experiencia es la de un mundo estable y que posee una profunda consistencia y continuidad.

Sí, nosotros también hemos llegado a saber que con el paso del tiempo, aumenta la entropía y las cosas cambian.  Sin embargo, algunas cosas no cambian, continúan siempre igual, sin que nada les afecte.  Esas, precisamente, son las constantes de la naturaleza que, desde mediados del siglo XIX, comenzó a llamar la atención de físicos como George Johnstone Stoney (1.826-1.911, Irlanda).

Las estrellas pueden clasificarse de muchas maneras.  Una manera es mediante su etapa evolutiva: en presecuencia  principal, secuencia principal*,  gigante, supergigante, enana blanca, estrella de neutrones y Agujeros negros.  Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales.  Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en Novas y finalmente quedan como enanas blancas.  Si la masa es mayor serán estrellas de neutrones, y, si aún son mayores, su final está en Agujeros Negros.

Otra clasificación es a partir de sus espectros, que indican su temperatura superficial.  Otra manera es en Poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad.  También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.

Leer más

Cosas de la Mecánica cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica.  En estadística cuantica, los estados de energía se considera que están cuantizados.  La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

         Los bosones tienen un momento angular n h / 2p, donde n es cero o un entero y h es la constante de Planck.  Para bosones idénticos, la función de ondas es siempre simétrica.  Si solo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

         La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

         En un espacio de dos dimensiones es posible que existan partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones.  Estas partículas se conocen con el nombre de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1.  Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

         Debido al principio de exclusión de Pauli es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones).

         La condensación de Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7k) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Este efecto (condensación Bose-Einstein), como ya habréis podido suponer, es llamado así en honor al físico Satyendra Naht Bose (1.894-1.974) y de Albert Einstein.

         Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

         Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender como forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado.  Lo cierto es que ocurre así. La prueba directa más evidente de ello es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado.  El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalentes a cero, aunque por alguna razón desconocida, lograr crear un campo magnético cuando gira la partícula.

         Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E=mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es, ¡materia! La materia es la luz, la energía, el magnetismo.  En definitiva, la fuerza que reine en el Universo y que esté presente, de una u otra forma en todas partes (aunque no podamos verla).

         ¡Es Curioso!

         Sea como fuere, la rotación del neutrón nos de la respuesta a esas preguntas:

               ¿Qué es el antineutrón?  Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo.  En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

         Es indudable que las antipartículas pueden combinarse para formar la “antimateria”, de la misma forma que las partículas corrientes forman la materia ordinaria.

         La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un “antideuterón”. Desde entonces se ha producido el “antihielo 3”, y no cabe duda de que se pudiera crear otros antinúcleos más complicados aun si se abordara el problema con más interés.

         Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el Universo?

         Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente.  Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro.  Así, pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate dichas interacciones materia-antimateria.

         No parece que dichas observaciones fuesen un éxito. 

         ¿Es posible que el Universo este formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalentes en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaria la otra, y el Universo debería estar compuesta de iguales cantidades de la una y de la otra.

         Este es el dilema.  La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los causares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

         Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado de su composición  en lugares muy lejanos del Universo.

         Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible.

         El comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad ¡un material desconocido! Sin embargo, no porque la nave esté construida por una materia distinta, sino porque, la aleación es distinta y más avanzada a partir de los materiales conocidos en el Universo.

         En cualquier parte del Universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte.

         Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia?

         Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza.

         Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránidos.

         A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

emilio silvera


(1) Me refiero a la materia.

La Física Cuántica nos revelará los secretos del Cosmos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1.930, el físico Wolfgang Pauli propuso la hipótesis de una nueva e invisible partícula denominada neutrino para dar cuenta de la energía pérdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía. Pauli comprendió, no obstante, que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente, muy raramente con la materia.

Por ejemplo, si pudiéramos construir un bloque sólido de plomo de varios años-luz de extensión desde nuestro Sistema Solar hasta Alpha Centaury y lo pusiéramos en el camino de un haz de neutrinos, aun saldrían algunos por el extremo opuesto.  Pueden atravesar la Tierra como si ni siquiera existiese y, de hecho, billones de neutrinos emitidos por el Sol están atravesando continuamente nuestros cuerpos, tanto de día como de noche.  Pauli admitió: “He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada.”

Los neutrinos han sido objeto de grandes proyectos para su localización, y, escondidos en las profundidades de la Tierra, en minas abandonadas, han sido instalados grandes depósitos de agua pesada que, detectaban a los neutrinos que allí interaccionaban y que eran detectados por ordenador. Hay empresas que parecen descabelladas y, sin embargo, son las que nos traen los mayores éxitos.

Si repasamos la historia de la Ciencia, seguramente encontraremos muchos motivos para el optimismo.  Witten con su Teoría M,  está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck.

Como ya he contado en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.  En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.  Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas…  La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

En su opinión Las buenas ideas siempre se verifican.

Los ejemplos son innumerables: La Gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio incertidumbre de Heisemberg, la función de ondas de Schrödinger, y tantos y tantos otros.

Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación.

El astrónomo Arthur Eddington (ya lo hemos nombrado antes) se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado.

El premio Nóbel Paul Dirac incluso llegó a decir de forma más categórica:”Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas.”

O, en palabras del físico John Ellis del CERN: “como decía en una envoltura de caramelos que abrí hace algunos años:  ” Es sólo el optimista el que consigue algo en este mundo”

Yo, como todos ustedes, un hombre normal y corriente de la calle, escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y, finalmente, también como todos ustedes, decido según mi propio criterio, que no obligatoriamente, coincidirá con alguna de esas opiniones, y, en algún caso, hasta me permito emitir, la mía propia.

Suponiendo que algún físico brillante nos resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en este mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa.

El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck.  Esta fabulosa energía fue liberada sólo en el propio instante de la creación. Lo que quiere decir, que la teoría de supercuerdas es naturalmente una teoría de la Creación.

Fuimos capaces de predecir que el big bang produjo un “eco” cósmico reverberando en el Universo y que podría ser medido por los instrumentos adecuados.   De hecho, Arno Penzias y Robert Wilson de los Bell telephone Laboratories ganaron el premio Nóbel en 1978 por detectar este eco del big bang, una radiación de microondas que impregna el Universo conocido. El que el eco del big bang debería estar circulando por el Universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio.

La propia idea de medir el Eco de la Creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial.

Su lógica, sin embargo, era aplastante.  Cualquier objeto, cuando se calienta, emite radiación de forma gradual.  Esta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un horno y, cuanto más se calienta, mayor es la frecuencia de radiación que emite.  Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura.  (De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana, examinando su color).  Esta radiación se denomina RADIACIÓN DE CUERPO NEGRO.

Esta radiación (como no), ha sido aprovechada por los ejércitos que mediante visores nocturnos pueden operar en la oscuridad.  De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojos.  Esta es también la razón de que nuestros automóviles cerrados se calienten en verano, ya que, la luz del Sol atraviesa los cristales del automóvil y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja.  Sin embargo, esta clase de radiación, no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura.

Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin control de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra y, de este modo, calentar gradualmente el planeta.

Gamow razonó que el big bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación.  Aunque la tecnología de los años cuarenta era demasiado primitiva para captar esta débil señal de la Creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles para detectar esta radiación “fósil”.

La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del big bang, el Universo se enfrió hasta el punto en el que los átomos pudieron empezar a componerse; los electrones pudieron empezar a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que esta impregnando todo el Universo.  Antes de este momento, el Universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su formación.  Esto significa que el Universo era opaco, como una niebla espesa absorbente e impenetrable.

Pasados 300.000 años, la radiación no era tan potente, se había enfriado, y por lo tanto la luz podía atravesar grandes distancias sin ser dispersada.  En otras palabras, el Universo se hizo repentinamente mayor y transparente.

Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro.  Se extiende sobre todo el rango de longitud de onda y la distribución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas.*

Hablar, sin más especificaciones, radiación, es estar refiriéndonos a una energía que viaja en forma de ondas electromagnéticas o fotones por el Universo.  También nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.

La radiación actínida es la electromagnética que es capaz de iniciar una reacción química.  El término es usado específicamente para la radiación ultravioleta y también para denotar radiación que podría afectar a las emulsiones fotográficas.

Radiación blanda, radiación cósmica, radiación de calor, radiación de fondo, de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, poli cromática, de sincrotrón, ultravioleta, de la teoría cuántica, de radiactividad…    y, como se puede ver, la radiación en sus diversas formas, es, un Universo en sí misma.

Siempre me llamó la atención y se ganó mi admiración el físico alemán Max Planck (1858-1947), responsable, entre otros muchos logros, de la ley de radiación de Planck que, da la distribución de energía radiada por un cuerpo negro.  Introdujo en Física el concepto novedoso de que la energía es una entidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua.

Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Einstein se inspiró en este trabajo para a su vez, presentar el suyo propio sobre el efecto fotoeléctrico donde la energía máxima cinética del fotoelectrón, Em’ esta dada por la ecuación que lleva su nombre:

Planck publicó en 1.900, un artículo sobre la radiación de cuerpo negro que, sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisemberg, Schrördinger, Dirac, Feymann, etc.

Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc.  Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de la física.

Pongamos un par de ejemplos de su ingenio:

1)     Longitud de Planck que  vale 10-35 metros

Esta escala de longitud (veinte ordenes de magnitud menor que el tamaño del protón 10-15 m.) es a la que la descripción clásica de la gravedad cesa de ser válida y deber ser tenida en cuenta la mecánica cuántica.

En la formula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz.

 Masa de Planck

2)   vale 10 exp. -8 kg. 

Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck.  Está dada por la ecuación 2), donde ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional (los mismos términos de la ecuación 1), pero intercambiándolos de manera que tienen otro significado).

La descripción de una partícula elemental de esta masa, o partículas que interaccionan con energías por partículas equivalentes a ella (a través de ), requiere una teoría cuántica de la gravedad.  Como la masa de Planck es del orden de 10-8 Kg (equivalente a una energía de 10 exp.19 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del orden de 10 exp.3 GeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas.

Únicamente, en un laboratorio aparecieron partículas que tenían energías del orden de la masa de Planck: en el Universo primitivo, de acuerdo con la teoría del Big Bang, motivo este por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas condiciones.

Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable para nosotros), es la que necesitamos para verificar la teoría de supercuerdas.

Siempre, desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la Naturaleza y, la innegable batalla mantenida, a lo largo de la historia, por los científicos para descubrirlos.

emilio silvera


* Mirar Ley de Stefan y Ley de desplazamiento de Wiey.

Los grandes números del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El lector de ciencia no iniciado, no quiere estas complejidades que, por muy perfectas que puedan resultar técnicamente hablando, siempre les resultaran aburridas, tediosas y lo que es peor, incomprensible.

Los buenos escritores-divulgadores de la ciencia, deben contar los fenómenos naturales revistiéndolos de un atractivo y misterioso halo mágico que se desvela ante sus ojos produciéndoles asombro y sorpresa ante tales maravillas.

Si contamos la historia de una estrella, desde que nace a partir del gas, el proceso que sigue hasta convertirse en otro objeto estelar diferente, al oyente, le resultará atractivo o pesado, interesante o incomprensible, según quien y como lo cuente.

Me preocupa, cuando escribo, que lo que estoy contando pueda aburrir al posible lector.  En mi caso, que no superviso de manera previa mis pensamientos y tal como nacen los escribo, es posible que, en alguna ocasión pueda aburrir o ser un rollo.  Pido perdón por ello (por si acaso).

Volviendo a la página primera y rememorando los avances que la Humanidad logró en los últimos tiempos, caigo en la cuenta de que, poco a poco hemos sido capaces de identificar una colección de números mágicos y misteriosos arraigados en la regularidad de la experiencia.

¡Son las constantes de la Naturaleza!

Dan al Universo su carácter distintivo y lo hace singular, distinto a otros que podría, nuestra imaginación, inventar.

Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el Universo que nos acoge y las constantes universales.  Pues, las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invariancia, pero no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la Naturaleza. ¿Os acordáis del 137? Ese número puro, adimensional que guarda los secretos del electrón (e) de la luz (c) y del cuanto de Planck (h).

Hemos descubierto otras nuevas, hemos relacionado las viejas y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.

Buscar esos secretos ocultos, implica que, necesitamos desentrañar la teoría más profunda de todas y la más fundamental de las leyes de la Naturaleza: Averiguar si las constantes que las definen están determinadas y conformadas por alguna consistencia lógica superior o si, por el contrario, sigue existiendo un papel para el azar.

Si estudiamos atenta y profundamente las constantes de la Naturaleza, nos encontramos con una situación muy peculiar.  Mientras parece que ciertas constantes estuvieran fijadas, otras tienen espacio para ser distintas de las que son y algunas no parecen afectadas por ninguna otra cosa del o en el Universo.

¿ Llegaron estos valores al azar?

¿ Podrían ser realmente distintos?

¿Cuán diferentes podrían ser para seguir albergando la existencia de seres vivos en el Universo?

En 1.986, el libro The Anthropic Cosmológicas Principle, exploraba las diez maneras conocidas en que la vida en el Universo era sensible a los valores de las Constantes Universales.  Universos con constantes ligeramente alteradas nacerían muertos, privados del potencial para desarrollar y sostener la complejidad que llamamos vida.

En la literatura científica puede encontrarse todo tipo de coincidencias numéricas que involucran a los valores de las constantes de la Naturaleza.

He aquí algunas de las formulas propuestas (ninguna tomada en serio) para la constante de estructura fina.

Valor experimental: 1/a = 137,035989561….

En primer lugar, ha habido intentos de “demostrar” que 1/a es igual a las siguientes expresiones que utilizan una extensión especulativa de física conocida:

 –         Lewis y Adams…. 1/a = 8p(8p5/15)1/3 = 137, 384

–         Eddington………….. 1/a = (162– 16)/2+16-1 = 137

–         Wiler………………….. 1/a = (8p4/9)(245!/p5)¼ = 137,036082

–         Aspden y Eagles.. 1/a = 108p(8/1.843)1/6 = 137,035915

Por supuesto, si la teoría M da al fin con una determinación del valor de 1/a podría parecerse perfectamente a una de estas fórmulas especulativas.  Sin embargo, ofrecería un amplio y constante edificio teórico del que seguiría la predicción.

También tendría que haber, o mejor que hacer, algunas predicciones de cosas que todavía no hemos medido; por ejemplo, las siguientes cifras decimales de 1/a, que los futuros experimentadores podrían buscar y comprobar con medios más adelantados que las que ahora tenemos, a todas luces, insuficientes en tecnología y potencia.

Todos estos ejercicios de juegos mentales numéricos, se acercan de manera impresionante al valor obtenido experimentalmente pero el premio para el ingenio persistente le corresponde a Gary Adamson, cuya muestra de 137-logía se dieron a conocer en numerosas publicaciones.

Estos ejemplos tienen al menos la virtud de surgir de algún intento de formular una teoría de electromagnetismo y partículas.  Pero hay también matemáticos “puros” que buscan cualquier combinación de potencias de números pequeños y constantes matemáticas importantes, como p, que se aproxime al requerido 137,035989561……   He aquí algún ejemplo de este tipo:

–         Robertson………….  1/a = 2-19/4310/3517/4p-2 = 137,03594

–         Burger………………..  1/a = (1372+p2)1/2 = 137, 0360157

Ni siquiera el gran físico teórico Werner Heisemberg pudo resistirse a la ironía o irónica sospecha de que:

“En cuanto al valor numérico supongo que 1/a = 24 33/p,

Arthur Eddington, uno de los más grandes astrofísicos del siglo xx, y una notable combinación de lo profundo y lo fantástico, más que cualquier figura moderna, fue el responsable impulsor de poner en marcha los inacabables intentos de explicar las constantes de la Naturaleza mediante auténticas proezas de numerología pura.  Él también advirtió un aspecto nuevo y espectacular de las constantes de la Naturaleza.

He tenido una visión muy extraña, he tenido un sueño; supera el ingenio del hombre decir que sueño era: el hombre no es más que un asno cuando tiene que exponer este sueño.  Se llamará el sueño del fondo, porque no tiene fondo.

                                                                        A.S. Eddington

Cuento hasta el total de protones del Universo y me salen:

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.

914.527.116.709.366.231.425.076.185.631.031.296.

(si el número de arriba no lo parto en dos me distorsiona la página)

El conservadurismo recela del pensamiento, porque el pensamiento en general lleva a conclusiones erróneas, a menos que uno piense muy, muy intensamente.

                                                                        Roger Scruton

Hay que prestar atención a las coincidencias.  Uno de los aspectos más sorprendentes en el estudio del Universo astronómico durante el siglo XX ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera reconocida: Cuándo los físicos empezaron a apreciar el papel de los constantes en el dominio cuántico y a explorar y explotar la nueva teoría de la Relatividad General de la Gravedad de Einstein para describir el Universo en su conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.

Entró en escena Arthur Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares.  También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de ratificar, en una prueba decisiva, durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1,75 segundos de arco cuando pasaba cerca de la superficie solar, y así resulto.

Albert Einstein y Arthur Stanley Eddington, se conocieron y se hicieron amigos.  Se conservan fotos de los dos juntos conversando sentados en un banco del jardín de Eddington en el año 1.939, donde fueron fotografiados por la hermana del dueño de la casa.

Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas.  Nunca se casó y vivió en el Observatorio en Cambridge, donde su hermana cuidaba de él y de su anciana madre.

Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la Naturaleza y predecir la existencia en el Universo de cosas como estrellas y Galaxias.

¡ Se está saliendo con la suya !

Entre los números de Eddington que él consideraba importante y que se denomino “numero de Eddington”, que es igual al número de protones del Universo visible.  Eddington calculó (a mano) este número enorme y de enorme precisión en un crucero trasatlántico (ya lo he contado otras veces), concluyendo con esta memorable afirmación de la inmensa cantidad arriba reseñada.

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080.  Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.

Durante la década de 1.920, cuándo Eddington empezó su búsqueda para explicar las constantes de la Naturaleza, no se conocían  bien las fuerzas débil y fuerte de la Naturaleza, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la Gravedad y las fuerzas electromagnéticas ( Einstein y Maxwell ).

Eddington las dispuso en tres grupos o tres números puros adimensionales.  Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y electrón:

mpr/me 1840,

la inversa de la constante de estructura fina

2phc/e2≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón,

22/Gmpr me 1040

A estas unió o añadió su número cosmológico, N Edd ≈ 1080.

A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafió de la ciencia teórica:

¿Son estas cuatro constantes irreducibles, o una unificación posterior de la Física demostrará que alguna o todas ellas pueden ser prescindibles ?

¿Podrían haber sido diferentes de lo que realmente son?

De momento con certeza, nadie ha podido contestar a estas dos preguntas que, como tantas otras, están a la espera de esa Gran teoría Unificada del Todo que, por fín, nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo

¡Es todo tan complejo!

¿Acaso es sencillo y no sabemos verlo?

Seguramente, un poco de ambas cosas.  Ni es tan complejo ni tan sencillo, nuestras mentes aún no están preparadas para ver su simple belleza.  Una cosa es segura, la verdad está ahí, esperándonos.

Para poder ver con claridad no necesitamos gafas, sino evolución. Hace falta alguien que, como Einstein hace 100 años, venga con nuevas ideas y revolucione el mundo de las Matemáticas y de la Física que, a comienzos del siglo XXI, están necesitada de un nuevo y gran impulso.

¿Quien será el elegido?

Por mi parte, me da igual quien pueda ser, pero…

¡Que venga pronto!

Quiero ser testigo de los grandes acontecimientos que se avecinan: La teoría de supercuerdas, la partícula de Higgs, el Gravitón, los Quarks libres,  y ……   muchos más.

De todas las maneras, antes de pasar a otros temas, debo comentar que algunos físicos piensan que las Constantes de la Naturaleza son “reprocesadas” cuando la materia colapsa en una singularidad de densidad infinita, por ejemplo cuando un Universo cerrado colapsa y rebota a un estado de expansión, como fue sugerido por primera vez por John A. Wheeler.

El Universo colapsa en el Big Crunch y pasa a Big Bang expandiéndose para formar un nuevo Universo y comenzar de nuevo.

Mirando al cielo nocturno estrellado, o desde la orilla del Atlántico, la inmensidad del océano que se pierde en el horizonte, nos podríamos sentir insignificantes.  Sin embargo, no es así como debemos mirarlo.  He dicho alguna vez que, todo lo grande está hecho de cosas pequeñas, y, esa afirmación nos dá la respuesta.  Formamos parte de algo muy grande:  El Universo.

emilio silvera