Ago
21
El Renacimiento y Personajes para recordar
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (2)
Los pensadores del Renacimiento creían que todo el Universo era un modelo de la idea divina y que el hombre era “un creador que venía después del creador divino”. Esta concepción era el concepto de belleza, una forma de armonía que reflejaba las intenciones de la divinidad.
Lo que era placentero para los ojos, el oído y la mente era bueno, moralmente valioso en sí mismo. Más aún: revelaba parte del plan divino para la Humanidad, pues evidenciaba la relación de las partes con el todo.
Este ideal renacentista de belleza respaldaba la noción de que esta tenía dos funciones, noción aplicable a todas las disciplinas. En un nivel, la arquitectura, las artes visuales, la música y los aspectos formales de las artes literarias y dramáticas informaban a la mente; en segundo nivel, la complacían mediante el decoro, el estilo y la simetría. De esta forma se estableció una asociación entre belleza e ilustración. También esto era lo que entonces significaba la sabiduría.
El fin perseguido era el deseo de universalidad personal, la consecución de conocimientos universales, la conjunción de disciplinas diferentes como ramas del todo, del saber profundo que abarcaba desde el núcleo las distintas esferas del conocimiento universales, la conjunción de disciplinas diferentes como ramas del todo, del saber profundo que abarcaba desde el núcleo las distintas esferas del conocimiento como partes de ese todo.
El reconocimiento de la belleza se funda en los dones divinos del intelecto humano. Durante el Renacimiento se escribieron unos cuarenta y tres tratados sobre la belleza. La idea de hombre universal es una idea común a casi todos ellos.
Meter Burke ha destacado a quince hombres universales del Renacimiento (“universales” en tanto evidenciaron su talento, más allá del mero diletantismo, en tres o más campos):
Filippo Brunelleschi (1377-1446), arquitecto, ingeniero, escultor, pintor.
Antonio Filarete (1400-1465), arquitecto, escultor escritor.
León Battista Alberti (1404-1472), arquitecto, escritor, pintor.
Lorenzo Vecchietta (1405-1489), arquitecto, pintor, escultor, ingeniero.
Bernard Zenale (1436-1526), arquitecto, pintor, escritor.
Francesco di Giorgio Martín (1439-1506), arquitecto, ingeniero, escultor, pintor.
Donato Bramante (1444-1514), arquitecto, ingeniero, pintor, poeta.
Leonardo da Vinci (1452-1519), arquitecto, escultor, pintor, científico.
Giovanni Giocondo (1457-1525), arquitecto, ingeniero, humanista.
Silvestre Aquilano (antes de 1471-1504), arquitecto, escultor, pintor.
Sebastiano Serlio (1475-1554), arquitecto, pintor, escritor.
Michelangelo Buonarroti (1475-1464), arquitecto, escultor, pintor, escritor.
Guido Masón (antes de 1.477-1518), escritor, pintor, productor teatral.
Piero Liborio (1500-1583), arquitecto, ingeniero, escultor, pintor.
Giorgio Vasari (1511-1574), arquitecto, escritor, escultor y pintor.
El que esto está leyendo advertirá que en esta lista, de un total de quince hombres universales, catorce eran arquitectos, trece pintores, diez escultores, seis ingenieros y seis escritores. Solo un científico.
¿Qué tenía en particular la arquitectura para ocupar un lugar tan destacado frente a todas las demás actividades? En el Renacimiento, la aspiración de muchos artistas era el progreso arquitectónico. En el siglo XV la arquitectura era una de las actividades que más se aproximaban a las artes liberales, mientras que la pintura y la escultura era sólo mecánica. Esto cambiaría después, pero ayuda a explicar las prioridades en la Italia del quattrocento.
Las carreras de algunos de estos hombres universales fueron extraordinarias. Francesco di Giorgio Martín, por ejemplo, diseñó un gran número de fortalezas y máquinas militares. Y otra de sus ideas pueden apreciarse en los setenta y dos bajorrelieves que realizó dedicados todos a “instrumentos bélicos” (que pelmaso). Concejal en Siena y espía que informaba de los movimientos de las tropas papales y florentinas. Escribió un importante tratado de arquitectura.
Giovanni Giocondo fue un fraile dominico, del que alguien dijo que era “un hombre de muchas facetas y maestro de todas las facultades nobles”.
Vasari lo describe principalmente como hombre de letras, pero añade que era también un muy buen teólogo y filósofo, un gran conocedor del griego (en un momento en que tal cosa no era corriente en Italia), un magnifico arquitecto y un excelente maestro de la perspectiva.
Adquirió fama en Verona, la ciudad en que vivía, por el papel que desempeñó en el rediseño del Ponte Della Pietra, un puente construido sobre terreno tan inestable que siempre estaba derrumbándose. En su juventud pasó muchos años en Roma, lo que le permitió familiarizarse con las reliquias de la antigüedad, de muchas de las cuales se ocupó en un libro.
Mugellane llamó a Giocondo “profundo maestro de antigüedades”. Escribió comentarios sobre Cesar y divulgó a Vitruvio entre sus contemporáneos y descubrió cartas de Plinio en una biblioteca parisina.
Construyó dos puentes sobre el Sena por encargo del rey de Francia. Tras la muerte de Bramante se le encomendó completar, junto con Rafael, los trabajos de la Iglesia de San Pedro.
Con todo, es probable que su mayor logro fuera la solución que ideó para los grandes canales de Venecia, ya que al desviar las aguas del río Brenta contribuyó a que La Serenísima sobre viviera hasta nuestros días.
Los talentos de Brunelleschi superan los mencionados con anterioridad. Además de haber diseñado y dirigido la construcción de la maravillosa cúpula de la catedral de Santa María del Fiore en su ciudad, fue fabricante de relojes, orfebre y arqueólogo. Amigo de Donatello y Massaccio, fue más polifacético que cualquier de ellos.
Cabria preguntarse si en realidad se ha exagerado la idea de hombre universal, de hombre renacentista. En el siglo XII ciertos estudiosos, como Tómás de Aquino, estuvieron muy cerca de poseer un “saber universal”, ya que conocían todo lo que podía conocerse en la época. Todo el conocimiento allí, el conocimiento total (al que se podía acceder) estaba resumido en poco más de un centenar de volúmenes, lo que hacía posible saberlo casi todo.
Acaso lo que resulta realmente significativo en la idea renacentista del hombre universal sea la actitud de los individuos que la encarnaron, su conciencia de sí mismos, su optimista punto de mira sobre la solución de problemas, lo que explica en buena medida la explosión de la imaginación que caracteriza el periodo.
Las ideas rivalizaban entre sí, íntimamente ligada a la idea de universalidad estaba la cuestión del paragone: si la pintura era superior a la escultura y viceversa. El debate era enorme, en el siglo XV éste era un asunto intelectual de enorme actualidad. Los escritos de Alberti, Filarete y el mismo Leonardo dejaron constancia de lo que pensaban sobre le tema. Leonardo pensaba que el bajorrelieve era una especie de híbrido entre la pintura y la escultura, lo que podía hacerlo superior a ambos.
También había debate sobre pintura y poesía. Durante un tiempo, se consideró que ambas actividades eran muy similares.
Leonardo escribió un tratado sobre pintura y en el decía que “….la pintura era poesía muda y, por el contrario la poesía es pintura ciega… pero la pintura continúa siendo la más valiosa dado que sirve al sentido más noble”. ¡Lo que tú digas Leonardo!
Los círculos intelectuales de la época tenían en más alta consideración a los poetas que a los pintores.
De todos los artistas del Renacimiento que escribieron poesía el de mayor mérito literario fue sin duda Miguel Angel.
La misma idea de universalidad implicaba que el hombre universal era algo especial, diferente, un modelo del ideal. Por tanto, es natural que los hombres universales a los que antes me he referido estuvieran a la vanguardia del movimiento que consiguió mejorar el estatus de los artistas en el siglo XV.
Una de las formas en que se manifestó este cambio la encontramos en la práctica del autorretrato. Dada la autoconciencia que se había alcanzado hacia mediados de siglo sobre el valor del autorretrato y la imaginería asociada a la promoción intelectual y social, la labor de Antonio Filarete sin parangón.
Filarete incorporó no uno sino dos autorretratos suyos en la decoración de las puertas de bronce de San Pedro, que realizó por encargo del papa Eugenio IV entre 1.435 y 1.445. El segundo testimonio que dejó en su propia obra se aprecia en la cara interior de la puerta, en un relieve situado a nivel del suelo en el que aparecen Filarete y sus ayudantes, que ejecutan una danza, simbolizando así lo que pensaba de que, el trabajo en equipo tenía que ser como una danza en la que todos estaban en armonía para la consecución final y perfecta del trabajo a realizar. El trabajo en equipo es como un grupo que baila en perfecta conjunción para la buena realización del cometido final.
Pero Veronnoce en 1.573 compareció ante la Inquisición, la Reforma de la Iglesia católica (el concilio de Trento que se reunión de forma intermitente de 1.544 1 1563 para decidir la política de Roma) fue que las obras de arte pasaron a ser objeto de censura. 8La ciencia también)
Veronece había pintado un inmenso y suntuoso lienzo para los cultos padres dominicos del Convento de SantiGiovanni e Paolo, en Venecia, en donde era necesario para reemplazar una pintura de la última cena de Tiziano que se había consumido en un incendio.
El trabajo de Veronece era en realidad un triptico, tres arcos con Cristo en el centro al y escaleras que descienden del lienzo. A pesar del tema religioso, la pintura es muy viva y utiliza la perspectiva de forma sorprendente; representa una elaborada representación veneciana, en la que los asistentes aparecen vestidos con finas prendas y rodeados de jarras de vino, abundante comida, negros con vestidos exóticos, perros y monos. La Ingmisición lo reprendió por ello.
Valiente servicio hizo la Iglesia, por aquella época a las artes y las ciencias. Si acaso, habrá que reconocer la labor de conservación y reproducción de libros que se llevó a cabo en los conventos y monasterios.
Veronece presentó excusas ante el Tribunal Inquisidor y para defenderse de las preguntas llegó a decir:
“…. En efecto está mal, pero repito que me limito a seguir lo que mis superiores en el arte han hecho antes.
¿Qué han hecho ellos?
Miguel Angel pintó en Roma al Señor, a Su Madre, a los Santos y a las Huestes Celestiales desnudos, incluso a la Virgen María.”
Salió del trance con muchos apuros y su arte, como el de tantos otros entonces, que amputado al no estarle permitido utilizar su imaginación. Algunos menos afortunados fueron torturados y finalmente quemados en las Hogueras por herejes.
¡Tiempos de mal recuerdo!
emilio silvera
Ago
21
El fascinante universo de las partículas
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?
Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.
Partículas
El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.
El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.
Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.
Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.
Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había aducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.
En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.
Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.
Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.
Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.
Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.
Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.
Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:
aluminio 27 + helio 4 = silicio 30 + hidrógeno 1
Nótese que los números másicos se equilibran:
27 + 4 = 30 + 1
Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.
Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.
El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.
El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:
hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1
Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión a 20’5º K.
Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.
Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.
Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.
Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.
Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.
En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.
Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.
Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).
Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:
¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.
Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.
No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.
Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.
Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?
Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.
Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
¡No por pequeño se el insignificante!
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.
El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.
Existen razones teóricas para suponer que cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas) desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegase a captar la cienbillonésima parte de un centímetro. Las débiles ondas de los gravitones, que proceden del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitacionales. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaron el hallazgo de Weber.
En cualquier caso, no creo que a estas alturas alguien pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es cero, su carga es cero, y su espín es 2. Como el fotón, no tiene antipartícula; ellos mismos hacen las dos versiones y, las dos caminan por el universo a la velocidad de la luz.
emilio silvera
Ago
20
Pequeña historia de la música
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (2)
Como aquí, alguna vez, estoy reflejando retazos de historia de los caminos recorridos por el saber y curiosas situaciones y hechos del pasado que, en su conjunto, nos enseña como fueron las cosas en los ámbitos más diversos, os contaré ahora otra curiosidad:
En 1.470, en Breslau, durante una fiesta pública en honor del matrimonio de Matias Corvino, rey de Hungría los recién casados fueron agasajados por el sonido de muchas trompetas y de “toda clase de instrumentos de cuerdas”. Se considera que éste es el testimonio más antiguo de un gran número de instrumentos de cuerda, el ingrediente fundamental de lo que más tarde recibiría el nombre de orquestas.
Un centenar de años más tarde, aproximadamente entre 1.580 y 1.589, algunos caballeros empezaron a reunirse de forma regular en casa del conde Giovanni dei Bardi en Florencia. Este grupo, conocido como la camerana estaba compuesto por el célebre flautista Vincenzo Galilei (padre del astrónomo Galileo Galilei), Jacobo Peri y Giulio Caccini, también músicos, a los que se sumaba el Poeta Octavio Rinuccini.
Durante el curso de sus conversaciones, principalmente dedicadas al teatro clásico, surgió la idea de que las obras clásicas podían notarse “de forma declamatoria”. Fue así como más adelante nacería la opera. En términos muy amplios, podemos afirmar que en el largo siglo que va de 1.470 a 1.590 aparecen los principales elementos de la música moderna en un proceso análogo al que se observa en la pintura.
Los desarrollos en este campo pueden dividirse en tres grupos. En primer lugar, se dieron una serie de avances técnicos, tanto para instrumentos como para voces, que permitieron la evolución de los tipos de sonido que escuchamos hoy.
En segundo lugar, se desarrollaron diversos géneros musicales, lo que condujo a la forma de la música tal y como la conocemos en la actualidad.
Y, en tercer lugar, tenemos el surgimiento de los primeros compositores de música moderan, los primeros músicos famosos cuyos nombres aún recordamos.
Entre los avances técnicos, podemos señalar para empezar el principio de “imitación”, una innovación de la escuela de música flamenca, cuyos principales representantes fuera Jean Ockeghem (c. 1430-1.495) y Jacob Obrecht (c. 1430-1505). Sin embargo, durante el siglo XV y buena parte del XVI, la música flamenca fue ganando prestigio no sólo en Europa septentrional sino también en Italia.
En la corte papal en Roma, en la Catedral de San Marcos en Venecia, en Florencia y en Milán, los músicos flamencos eran los más solicitados. En este contexto, el término “imitación” designa la costumbre de que en una obra polifónica las voces no canten juntas sino una después de otra, cada una repitiendo lo dicho por la anterior. Este recurso tenía un gran poder expresivo y se ha mantenido vigente hasta el día de hoy en todos los géneros musicales.
Por la misma época, se introdujeron las masas corales que reunían gran cantidad de voces. En partículas el coro papal adquirió mucha importancia, si bien fue en Venecia donde el flamenco Adrian Willaert (c. 1.480-1.562) introdujo el coro doble, en el que dos cuerpos cocales se yuxta ponían continuamente uno a otro, algo que tenía una fuerza dramática aún mayor.
También fue en Venecia donde se dieron los primeros pasos hacia la orquestación, la idea de designar instrumentos específicos para cada parte de la composición. Esto se relaciona con el hecho de que fue también en esta ciudad donde se inició la impresión de partituras hacia 1.501, con lo que los intérpretes pudieron llevar las ideas musicales “no en la cabeza, sino en su equipaje”.
Venecia produjo dos músicos extraordinarios:
Andrea Gabriela y su sobrino Giovanni. Fueron ellos quienes perfeccionaron el equilibrio de los coros, con grupos de instrumentos de cuerda y de viento, en galerías corales opuestas que hacían avanzar y retroceder la melodía y que tenían por base dos grandes órganos.
Yehudi Menuhin considera que este momento de la música occidental “marca el auténtico comienzo de la música instrumental independiente” y, en particular, de un elemento que sería de vital importancia a lo largo de la era moderna: la disonancia suspendida.
Esta disonancia, planeada de forma deliberada, llama la atención sobre sí misma y exige ser resuelta (al menos hasta Schönberg, en 1.907), lo que subrayó el carácter emocional de la música y propició el desarrollo de la técnica de la modulación, el libre movimiento de un tono a otro sin el cual había sido imposible el movimiento romántico en la música.
Los siglos XV y XVI también fueron testigos del aumento del número de instrumentos disponibles y, en un sentido rudimentario, de los comienzos de la orquesta. Inicialmente, tuvo una gran importancia la difusión del arco desde Asia, a través del Islam y Bizancio, donde hacia el siglo X el Rabat y la luna se tocaban con arcos de una o dos cuerdas.
En Europa, el arco musical, descendiente directo del arco de caza, apareció primero en España y Sicilia, pero se difundió con rapidez hacia el norte del continente. Aunque el sonido producido al puntear las cuerdas se desvanecía con rapidez, se descubrió que las notas emitidas por las cuerdas al vibrar podían prolongarse mucho tiempo frotando un arco sobre ellas.
El segundo acontecimiento decisivo para la evolución de la música occidental fueron las cruzadas de los siglos XII y XIII. Los nuevos instrumentos encontrados en Oriente Próximo se difundieron velozmente, en particular el antecesor del violín, que aparece por primera vez en ilustraciones bizantinas del siglo XI, cuando tenía muchas formas diferentes (ovalada, elíptica, rectangular) y ya contaba con una parte estrecha para permitir que los movimientos del arco fueran más flexibles.
Otros instrumentos eran el rebec y el gittern, precursora de la guitarra, un enorme instrumento hecho a partir de un bloque de madera sólida.
Los instrumentos de cuerda provistos de teclado aparecen inicialmente en la primera mitad del siglo XV, quizá como desarrollo de un instrumento misterioso, el checker, del que no se conserva ningún ejemplar, por lo que solo lo conocemos a través de ilustraciones.
También existía un primitivo clavicordio, denominado monocordio (quizá inventado por Pitágoras), y un antiguo clavicémbalo, un instrumento alargado, a partir del cual evolucionaron la espineta y el virginal, ambos de tamaño más pequeño.
Para el siglo XVI el laúd, la guitarra, la viola y el violín, se habían hecho muy populares a medida que se difundía el gusto por la música cromática. Carlos IX, rey de Francia entre 1.560 y 1.574, ordenó la construcción de treinta y ocho instrumentos a Andrea Amati, el famoso fabricante de Cremona, y especificó que doce debían ser violines grandes, doce violines pequeños, seis violas y ocho bajos.
Entre los instrumentos de viento, el órgano se había utilizado desde la época de los romanos, si bien desde el siglo X en adelante había pasado a ser instrumento exclusivo de la Iglesia.
En este campo la importación más significativa de Oriente fue la bombarda, que deriva de la surna persa, un instrumento de doble lengüeta con agujeros para los dedos y pabellón amplio. El oboe moderno probablemente fue inventado a mediados del siglo XVII por un miembro de la familia Hotteterre, y se introdujo en la corte francesa. Se consideraba un complemento de los violes, aunque también contribuía al continuo.
Entre las diversas formas musicales surgidas desde el siglo XI podemos destacar el madrigal, la sonata, las formas corales, el concierto, el oratorio y la ópera.
Con la maduración del madrigal, el liderazgo musical pasó de los flamencos a los italianos, y en particular a Roma y Venecia, si bien no se debe olvidar la contribución de los franceses al crear la chanson, conocida en otros lugares como canzon francese. La chanson era una forma despreocupada y alegre, que con frecuencia proponía “cancioncillas de amor” sentimentales y nostálgicas, según las palabras de Alfred Einstein, en las que la voz pretendía imitar el canto de las aves, y partir de ella surgiría finalmente la sonata.
Los principales exponentes del madrigal y de la chanson/sonata fueron Giovanni Pierluigi da Palestrina (1.525-1.594) y Orlando di Lasso (1.532-1.594). En Roma, Palestrina fue maestro di capella de la iglesia de San Pedro desde 1.571. Compuso noventa y cuatro misas y ciento cuarenta madrigales. Fundamentalmente fue un compositor religioso.
Lasso, por su parte, fue un maestro del madrigal y del motete, que celebró en sus obras el amor en esta vida y esta tierra. La búsqueda del estilo y la excelencia instrumental condujo en su momento a la aparición del virtuoso, particularmente en los teclados y las maderas. En ello también observamos un proceso similar al que tuvo lugar en la pintura: el surgimiento del músico como artista respetado por derecho propio.
Al evolucionar, la canzon francese se dividió en dos tipos: la sonata para instrumentos de viento y la canzona para los de cuerda. Mientras la primera daría lugar al concierto (y más tarde a la sinfonía), la segunda evolucionaría en la sonata de cámara.
Los humanistas que en Florencia dieron origen a la ópera estaban convencidos de que la primera función de la música era intensificar el impacto emocional de la palabra hablada. Inicialmente, el nuevo discurso musical se denominó recitativo: el texto se recitaba o declamaba sobre un fondo musical compuesto principalmente por una serie de acordes con disonancias ocasionales con que producir efectos dramáticos. No obstante, desde el principio existió una estructura armónica, lo que se denomina música “vertical” en oposición a la meramente “horizontal”.
El primer gran compositor de óperas fue Claudio Monteverde (1.567-1.643). Su Orfeo, escrito para violas y violines y estrenado en Mantua en 1.607, supuso un significativo avance respecto de las óperas presentadas antes en Florencia. Aunque Monteverde poseía un don original para la armonía que le permitió introducir también algunas disonancias andaces, la principal característica de su música es s gran calidad expresiva, como por ejemplo, Ariadna, o su famoso Lamento de Ariadna, la primera aria o perística que se convirtió en canción popular y fue “tatareada y silbada por toda Italia”
De aquel fenómeno musical surgieron grandes teatros de ópera en toda Europa, si bien hasta 1.637 estos fueron lugares privados, dominio exclusivo de la nobleza. Sólo después de esa fecha encontramos, de nuevo en Venecia, asistentes a la ópera que pagan por su asistencia a las salas. En el siglo XVII la ciudad contaba con dieciséis teatros de ópera, cuatro de los cuales abrían todas las noches.
emilio silvera
Ago
20
Las Galaxias en el Universo
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (1)
Nuestro universo es igual en todas partes. Las leyes que rigen en todo el Universo son las mismas. La materia que puebla el Universo, Gases estelares, polvo cósmico, Galaxias con cientos de miles de millones de estrellas y sistemas planetarios, también es iguales en cualquier confín del Universo. Todo el Universo, por lo tanto, está plagado de Agujeros Negros y de estrella de neutrones. En realidad, con el transcurso del tiempo, el número de estos objetos masivos estelares irá en aumento, ya que, cada vez que explota una estrella supermasiva, nace un nuevo agujero negro o una estrella de neutrones, transformándose así en un objeto distinto del que fue en su origen. De gas y polvo pasó a ser estrella y después se transformó en un Agujero negro o en una estrella de neutrones.
GALAXÍA
La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles a simple vista durante la noche; es escrita con G mayúscula para distinguirla de las demás galaxias. Su disco es visible a simple vista como una débil banda alrededor del cielo, la Vía Láctea; de ahí que a la propia Galaxia se la denomine con frecuencia Vía Láctea.
Nuestra Galaxia tiene tres componentes principales. Uno es el disco de rotación de unas 6×1010 MO (masas solares) consistentes en estrellas relativamente jóvenes (Población II), cúmulos cubiertos de gas y polvo, estando estrellas jóvenes y material interestelar concentrados en brazos espirales. El disco es muy delgado, de unos 1.000 a. l., comparado con su diámetro de más de 100.000 años-luz. Aún continúa una activa formación de estrellas en el disco, particularmente en las nubes moleculares gigantes.
El segundo componente principal es un halo débil y aproximadamente esférico con quizás el 15-30% de la masa del disco. El halo está constituido por estrellas viejas (Población II), estando concentradas parte de ellas en cúmulos globulares, además de pequeñas cantidades de Gas caliente, y se une a un notable bulbo central de estrellas, también de la población II.
El tercer componente principal es un halo no detectado de materia oscura con una masa total de al menos 4×1011 masas solares. En total, hay probablemente alrededor de 2×1011 estrellas en la Galaxia (unos 200 mil millones), la mayoría con masas menores que el Sol.
La edad de la Galaxia es incierta, si bien el disco tiene al menos 10.000 millones de años, mientras que los cúmulos globulares y la mayoría de las estrellas del halo se cree que tienen entre 12000 y 14000 millones de años.
El Sol se encuentra a una distancia que está entre 26.000 y 30.000 años-luz del centro galáctico, en el Brazo de Orión.
El mismo centro Galáctico se halla en la constelación Sagitarius.
La Vía Láctea es una espiral, aunque las observaciones de su estructura y los intentos de medir las dimensiones de los brazos espirales se ven impedidos por el polvo oscurecedor del disco y por las dificultades en estimar distancias. Es posible que la Galaxia sea una espiral barrada dado que existen algunas evidencias de una estructura en forma de barra en las regiones centrales y el bulbo.
Todas las galaxias son sistemas de estrellas, a menudo con gas y polvo interestelar, unidas por la gravedad. Las galaxias son las principales estructuras visibles del Universo. Varían desde las enanas con menos de un millón de estrellas a las supergigantes con más de un billón de estrellas, y un diámetro desde unos pocos cientos a mas de 600.000 años-luz. Las galaxias pueden encontrarse aislados, o en pequeños grupos, como el nuestro, conocido Grupo Local, o en grandes cúmulos, como el Cúmulo de Virgo.
Las galaxias se clasifican habitualmente de acuerdo a su apariencia (clasificación de Hubble). A parecen en dos formas principales: espirales (con brazos) y elípticas (sin brazos). Las elípticas tienen una distribución de estrellas suave y concentrada en el centro, con muy poco gas o polvo interestelar. De las espirales hay varios tipos, espirales ordinarias y borradas. Ambos tipos tienen material interestelar además de estrellas. Las galaxias lenticulares presentan un disco claro, aunque sin brazos espirales visibles.
Las galaxias irregulares tienen una estructura bastante amorfa e irregular, en ocasiones con evidencias de brazos espirales o barras. Unas pocas galaxias no se parecen a ninguno de estos tipos principales, y pueden ser clasificadas como peculiares. Muchas de éstas son probablemente los resultados de choques entre galaxias que han quedado fusionadas quedando configuradas después de manera irregular.
El tipo de galaxia más numeroso pueden ser las galaxias esferoidales, pequeñas, y relativamente débiles, que tienen forma aproximadamente elíptica.
Se cree que las Galaxias se han formado por la acumulación gravitacional de gas, algún tiempo después de la época de la recombinación. Las nubes de gas podrían haber comenzado a formar estrellas, quizás como resultado de las colisiones mutuas. El tipo de galaxia generado podría depender del ritmo al que el gas era transformado en estrellas, formándose las elípticas cuando el gas se convertía rápidamente en estrellas, y las espirales si la transformación de estrellas era lo suficientemente lento como para permitir crecer de forma significativa un disco de gas.
Las galaxias evolucionan al convertir progresivamente su gas remanente en estrellas, si bien no existe probablemente una evolución entre las diferentes tipos de la clasificación del conocido sistema de Hubble. No obstante, algunas galaxias elípticas pudieron haberse creado por la colisión y posterior fusión de dos galaxias espirales.
El número relativo de Galaxias de los diferentes tipos está íntimamente relacionado con su brillo intrínseco y con el tipo de grupo o cúmulo al que pertenecen. En los cúmulos densos, con cientos o miles de galaxias, una alta proporción de las galaxias brillantes son elípticas y lenticulares, con unas pocas espirales (5-10%).
No obstante, la proporción de espirales pudo haber sido mayor en el pasado, habiendo perdido las espirales su gas de manera que ahora se asemejan a los lenticulares, o habiendo sufrido fusiones con otras galaxias espirales e irregulares para convertirse en elípticas. Ya sabéis que nada desaparece, solo se transforma.
Fuera de los cúmulos la mayoría de las galaxias pertenecen a grupos que contienen entre unos pocos y varias docenas de miembros, siendo raras las galaxias aisladas. Las espirales constituyen el 80% de las Galaxias brillantes en estos entornos de baja densidad, con una correspondiente baja proporción de elípticas y lenticulares.
Algunas galaxias presentan una actividad inusual en su centro, como las galaxias Seyfert o las galaxias N. Una radiogalaxia es un emisor inusualmente intenso de energía en forma de ondas de radio.
Hablando de Galaxias podríamos movernos en un amplio abanico de posibilidades de las que relaciono algunas a continuación:
Galaxia head-tail.- Una elíptica en la que una intensa emisión de radio en el núcleo está acompañada por una cola irregular de radioemisión difusa que se extiende cientos de miles de años-luz. Es una radiación sincrotrón de electrones energéticos.
Galaxia anular.- Inusual galaxia con anillo luminoso bien definido alrededor de un núcleo brillante. El anillo puede parecer suave y regular, o anudado y deformado, y puede contener gas y polvo además de estrellas. Un ejemplo es la Galaxia de la Rueda de Carro.
Galaxia binaria.- Par de galaxias en órbita de una en torno a la otra. Las auténticas galaxias binarias son muy difíciles de distinguir de las superposiciones casuales de dos galaxias en la línea de visión. La investigación estadística de los pares binarios que sigue las órbitas, es valiosa en el estudio de la estimación de las masas totales de algunos tipos particulares de galaxias.
Galaxia compacta.- Tipo de galaxia que solo puede ser distinguida de una estrella mediante placas de exploración del cielo tomadas con cámaras Schmidt. Tienen diámetros aparentes de 2-5” y una región de alto brillo superficial que puede ser definido y debido a núcleos brillantes de las regiones activas que están formando nuevas estrellas. Unos 2.000 objetos de este tipo fueron catalogados por F. Zwicky.
Galaxia con bajo brillo superficial (LSB).-Tipo de Galaxia cuya densidad de estrellas es tan baja, que es difícil detectarla frente al fondo del cielo. Se desconoce la proporción e galaxias con bajo brillo superficial en relación a las galaxias normales, pudiendo representar una parte significativa del Universo. Muchas de estas débiles galaxias son enanas, situadas particularmente en cúmulos de galaxias; algunas son tan masivas como las grandes espirales, por ejemplo, Malin-1.
Galaxia con envoltura.- Galaxia espiral rodeada por débiles arcos o capas de estrellas, situados a ángulos rectos con respecto a su eje mayor. Pueden observarse entre una y veinte capas casi concéntricas, aunque incompletas. Se disponen de manera que capas sucesivas puedan aparecer normalmente en lados opuestos de la Galaxia. Alrededor del 10% de las elípticas brillantes presentan envolturas, la mayoría de ellas en regiones de baja intensidad o densidad de Galaxias. No se conoce ninguna espiral con una estructura de capas de ese tipo. Podrían ser el resultado de una elíptica gigante que se come una compañera.
Galaxia de anillo polar.- Raro tipo de galaxia, casi siempre una galaxia lenticular, que tiene un anillo luminoso de estrellas, gas y polvo orbitando sobre los polos de su disco. Por tanto, los ejes de rotación del anillo y del disco forman casi un ángulo recto. Dicho sistema puede ser el resultado de una colisión, una captura de por maneras, o la unión de una galaxia rica en gas con la galaxia lenticular.
Galaxia de disco.-Tipo de galaxia cuya estructura principal es un delgado disco de estrellas con órbitas aproximadamente circulares alrededor de su centro, y cuya emisión de luz típicamente disminuye exponencialmente con el radio. El término se aplica a todos los tipos de galaxias que no sean elípticas, esferoidales enanas o algunas galaxias peculiares. El disco de las galaxias lenticulares contiene muy poco material interestelar, mientras que los discos de las galaxias espirales e irregulares contienen cantidades considerables de gas y polvo además de estrellas.
Galaxia de tipo tardío.- Galaxia espiral o irregular. El nombre proviene de la posición convencional de estas galaxias en el diagrama diapasón de los tipos de galaxias. Por razones similares, una galaxia espiral Sc o Sd pueden ser denominadas espiral del tipo tardío, en contraposición a una espiral Sa o Sb de tipo temprano.
Galaxia de tipo temprano.- Galaxia elíptica o lenticular: una sin brazos espirales. El hombre proviene de la posición de las galaxias en el diagrama diapasón de las formas de las galaxias. Por razones similares, una galaxia Sa podría ser referida como una espiral de tipo temprano, en contraposición, en contraposición a una espiral Sc o Sd de tipo tardío.
Se podría continuar explicando lo que es una Galaxia elíptica, enana, compacta azul, esferoidal enana, espiral (como la Vía Láctea), espiral enésima, espiral barrada, interaccionante, irregular, lenticular, peculiar, starburst, primordiales… etc. Sin embargo, creo que ya se ha dejado constancia aquí de los datos necesarios para el que lector tenga una idea de lo que es una galaxia. Así que decido finalizar el apartado de Galaxias, reflejando un cuadro del Grupo Local de galaxias en el que está situada la nuestra.
GRUPO LOCAL DE GALAXIAS |
|
Galaxia |
Distancia en kpc |
Andrómeda (M 31) |
725 |
Vía Láctea |
-0 |
Del Triángulo (M 33) |
795 |
Gran Nube de Magallanes |
49 |
IC 10 |
1250 |
M32 (NGC 221) |
725 |
NGC 6822 (de Barnard) |
540 |
M 120 (NGC 205) |
725 |
Pequeña Nube de Magallanes |
58 |
NGC 185 |
620 |
NGC 147 |
660 |
IC 1613 |
765 |
Wolf-Lundmark-Melotte |
940 |
Enana de Fornax |
131 |
Enana de Sagitarius |
25 |
And I |
725 |
And II |
725 |
Leo I |
273 |
Enana de Acuarius (DDO 210 |
800 |
Sagitarius (Sag DiG) |
1.100 |
Enana de Sculptor |
78 |
Enana de Antlia |
1.150 |
And III |
725 |
IGS 3 |
760 |
Enana de Sextans |
79 |
Enana de Phoenix |
390 |
Enana de Tucana |
870 |
Leo II |
215 |
Enana de Ursa Minor |
63 |
Enana de Carina |
87 |
Enana de Draco |
76 |
En el cuadro anterior del Grupo local de Galaxias al que pertenece la Vía Láctea, en la que está nuestro Sistema solar, se consigna las distancias a que se encuentran estas Galaxias de la nuestra y se hace en kiloparsec.
En el espacio exterior, el cosmos, lo que conocemos por Universo, las distancias son tan enormes que se tienen que medir con unidades espaciales como el año-luz (Distancia que recorre l luz en un año a razón de 299.792.458 metros por segundo. Otra unidad, ya mayor, es el Pársec (pc) Unidad básica de distancia estelar, correspondiente a una paralaje trigonométrica de un segundo de arco (1”). En otras palabras, es la distancia a la que una Unidad Astronómica (UA = 150.000.000 Km.) subtiende un ángulo de un segundo de arco. Un Pársec es igual a 3,2616 años-luz, o 206.265 Unidades Astronómicas, o 30,857×1012 Km. Para las distancias a escalas Galácticas o intergalácticas, se emplea una Unidad de medida superior al Pársec, el Kiloparsec (kpc) y el megaparsec (Mpc).
Esas inmensas distancias son, de momento, la barrera que nos tiene confinados ern nuestro Sistema Solar del que no tenemos ningún medio de salir, y, si en el futuro pudiéramos viajar a las estrellas, no podría ser por los medios convencionales que ahora conocemos, sino que, tendríamos que dominar el hiperespacio para poder llegar a regiones lejanas del Universo en un tiempo razonablemente aceptable y soportable.
emilio silvera
Ago
16
Del Año Internacional de la Astronomía en México
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Año Internacional de la Astronomía 2009
José Marquina
Departamento de Física, Facultad de Ciencias, UNAM
Vincenzo Galilei nació en 1520 en Santa María del Monte, cerca de Florencia. Fue un afamado laudista, compositor y teórico musical, que contribuyó de manera significativa a la evolución musical en el siglo XVI. Fue autor del Dialogo della musica antica e della moderna y del Discorso intorno all` Opera di Messer Gioseffo Zarlino da Chioggia . En la primera de estas obras, Vincenzo Galilei escribe: “Me parece que quienes confían sin más en la autoridad como prueba de una cosa cualquiera y no tratan de aducir alguna razón válida, proceden de forma ridícula… Yo deseo… que se me permita plantear cuestiones libremente, así como responder sin ningún tipo de adulación, pues esto es lo que verdaderamente conviene a quienes buscan la verdad de las cosas”.
En 1564, el 15 de febrero, nació, en Pisa, su primer hijo, al que puso por nombre Galileo. La familia Galilei vivió los siguientes 10 años en Pisa, trasladándose después a Florencia. En 1581, Galileo se matriculó en la Universidad de Pisa, en la carrera de Medicina, la cual abandonó en 1585, sin haber obtenido ningún título. Entre 1585 y 1589 se dedicó a diversas actividades, enriqueciendo sus conocimientos en diversas áreas, predominantemente en matemáticas, filosofía y literatura. De 1588 son las curiosas Lezioni circa la figura, sito e grandezza dell’ Inferno di Dante , escrito en el cual Galileo defiende las tesis de Manetti acerca de la topografía del infierno narrado por Dante. En 1589, regresó a la Universidad de Pisa, pero ahora como catedrático de matemáticas. En aquella época ésta no era una cátedra importante y su salario era de tan sólo 60 escudos anuales, mientras que, por ejemplo, Girolamo Mercuriales, catedrático de medicina, percibía 2000. De la época de Pisa es la leyenda de como refutó a Aristóteles lanzando objetos desde lo alto de la famosa torre inclinada, leyenda que es absolutamente falsa.
En 1591 murió Vincenzo, recayendo sobre los hombros de Galileo la responsabilidad de la familia, por lo que tuvo que ingeniárselas para conseguir un trabajo mejor remunerado y sobre todo con un futuro más halagador, lo cual consiguió en 1592 al obtener la cátedra de matemáticas en Padua.
En Padua, Galileo trabajó durante 18 años, y fueron, a decir del propio Galileo, los mejores años de su vida. En estos 18 años Galileo construyó su física, se unió a Marina Gamba y tuvo tres hijos, Virginia, que nació en 1600, Livia en 1601 y Vincenzo en 1606, los cuales fueron presentados en la pila bautismal con el apellido Gamba.
Estando en Padua, leyó el Mysterium Cosmographicum de Kepler y entró en contacto epistolar con él, gracias a lo cual sabemos que ya para 1597 Galileo asegura haber adoptado la doctrina de Copérnico y tener muchos argumentos en su favor, los cuales no ha dado a conocer públicamente “… temeroso de la suerte que corrió el propio Copérnico… quien, aunque adquirió fama inmortal, es para una multitud infinita de otros (que tan grande es el número de necios) objeto de burla y escarnio”.
En el año 1609, mientras continuaba sus estudios sobre el movimiento, tuvo noticias de la invención, en los Países Bajos, de un aparato que permitía ver cerca los objetos lejanos. Dándose cuenta de la importancia del telescopio (nombre acuñado el 14 de abril de 1611 por el filólogo Demisani), Galileo se dio a la tarea de construir uno con sus propios medios, lo cual consiguió rápidamente y después de presentarlo al Senado de Venecia y obtener algunas ventajas económicas, se dedicó a apuntarlo al cielo. El producto de sus observaciones celestes se plasmó en el Sidereus Nuncius , publicado en marzo de 1610 y dedicado al Gran Duque Cosme de Médicis. En este texto se encuentran las famosas observaciones telescópicas de la superficie lunar y el anuncio del descubrimiento de cuatro satélites de Júpiter (Io, Europa, Ganímedes y Calixto) denominados por Galileo astros mediceos, ya que, como asegura en su dedicatoria a Cosme de Médicis, están “… reservados a tu ínclito nombre…”.
El Siderius Nuncius anuncia una nueva era para la astronomía, ya que, aunque al principio recibió duras críticas por el uso del telescopio en cuestiones astronómicas, ya para abril de 1611 Galileo fue recibido, de manera triunfal, en Roma, entrevistándose con el mayor astrónomo del mundo católico, el famoso padre Clavius, que reconoció abiertamente las virtudes del telescopio y su utilidad para la observación astronómica. Igualmente, fue recibido por Pablo V y por el príncipe Federico Cesi, influyente personaje del mundo científico romano, que lo nombró miembro de la Accademia dei Lincei. Para estas fechas, Galileo ya se había mudado a Florencia, pues había sido nombrado Gran Matemático y Filósofo de la Corte de los Médicis, y desde ahí siguió sus observaciones telescópicas, reportadas a la forma de anagramas y según las cuales Saturno tenía dos satélites (en realidad se trataba de los anillos) y Venus presentaba fases como la Luna. Igualmente, en 1613 publicó, bajo los auspicios de la Accademia dei Lincei, su Istoria e dimostrazioni intorno alle macchie solari, en el que defiende el “… gran sistema copernicano, a favor de cuya revelación universal soplan ahora propicias brisas que nos disipan todo temor de nubarrones o vientos cruzados”.
En diciembre de este mismo año ocurrió un evento que tendría particular importancia en la historia del copernicanismo. En un desayuno con la duquesa Cristina de Lorena, madre de Cosme, el padre Castelli, amigo de Galileo, se enfrascó en una discusión con el doctor Boscaglia, profesor de filosofía, sobre los problemas teológicos que conlleva el aceptar el heliocentrismo, con el consecuente movimiento de la Tierra. Cuando Castelli le escribió a Galileo contándole esta anécdota, éste empezó, inmediatamente, la redacción de una Lettera a Castelli , que para 1615 se había convertido en la Lettera a Madama Cristina de Lorena, Granduchessa di Toscana , en la que Galileo decía, entre otras cosas, que “…es costumbre de las Escrituras, decir muchas cosas que son diferentes de la verdad absoluta…” y que “… las conclusiones físicas, las cuales han demostrado ser verdaderas, no se les debe dar un lugar más bajo que a los pasajes escriturales, sino que uno debe aclarar como dichos pasajes no son contradictorios con tales conclusiones…”.
Pareciera ser que Galileo desconocía que en el Concilio de Trento (1545 – 1563) se había prohibido, explícitamente, la interpretación libre de las Escrituras, aunque en la propia carta Galileo mostraba su conocimiento de tal prohibición, pero explicaba que el mandato conciliar se refería a “… aquellas proposiciones que son artículo de fe o involucran a la moral… ” y que “… el movimiento o reposo de la Tierra o del Sol no son artículo de fe y no están en contra de la moral…”, con lo que Galileo, no sólo se consideraba en libertad para interpretar las Escrituras, sino que además, explicaba como debían interpretarse los acuerdos del Concilio de Trento. Como remate, Galileo terminaba el escrito explicando, desde un punto de vista copernicano, el milagro de Josué, que era el ejemplo principal para los que aducían que el planteamiento heliocéntrico era contrario a las Escrituras. En este caso llama la atención que aunque el planteamiento de Galileo era que las Escrituras no debían interpretarse de manera textual, su explicación de dicho milagro se apegaba al sentido literal del texto.
El resultado de las cartas, que circularon profusamente, fue que Galileo fue acusado ante el Tribunal del Santo Oficio y aunque los procedimientos se realizaron secretamente, sin la participación de Galileo, sus amigos romanos lo mantenían al tanto de los rumores y las advertencias que de manera indirecta hacían personajes de la relevancia del Cardenal Bellarmino, el más influyente teólogo del catolicismo y consultor del Santo Oficio, que en una carta, del 12 de abril de 1615, al Padre Foscarini, autor de un libro que pretendía reconciliar la astronomía copernicana con la Biblia, le decía “… me parece que vuestra reverencia y el señor Galileo obráis prudentemente cuando os contentáis con hablar de manera hipotética y no absoluta…”, para, más adelante señalar que “… de contarse con una prueba real de que el Sol está en el centro del Universo, y la Tierra en la tercera esfera… deberíamos proceder en tal caso con gran circunspección para explicar pasajes de las Escrituras que parecen enseñar lo contrario… Pero no creo que exista tal prueba, puesto que nadie me la ha mostrado. … Y, en caso de duda, no puede uno abandonar las Sagradas Escrituras tal como las expusieron los Santos Padres…”.
Para diciembre de 1615 Galileo decidió ir a Roma para defender, de viva voz, sus planteamientos. Como no le fue fácil entrevistarse con altos cargos eclesiásticos, debió contentarse con tratar con intermediarios, razón por la cual, en enero de 1616, le envió al Cardenal Orsini la que, consideraba la prueba definitiva del movimiento de la Tierra: su teoría de las mareas.
El 24 de febrero de 1616, el veredicto del Santo Oficio señala que la proposición relativa al heliocentrismo es “… necia y absurda… desde el punto de vista filosófico, a la vez que formalmente herética…, mientras que la relativa al movimiento de la Tierra
“… merece idéntica censura… desde el punto de vista filosófico, mientras que desde el punto de vista teológico es cuando menos errónea por lo que respecta a la fe”.
Tras este dictamen, el Papa le solicitó a Bellarmino que notificase a Galileo la prohibición de seguir sosteniendo y defendiendo las proposiciones censuradas, y que en caso de que no estuviese dispuesto a acatar la decisión, el Comisario General de la Inquisición le ordenaría que no sostuviese, defendiese ni enseñase dichas proposiciones, pues de lo contrario la Inquisición procedería en su contra. Llama la atención que en la primera parte del encargo a Bellarmino no se habla de la prohibición de enseñar, mientras que en la segunda, en la que aparece el Comisario General de la Inquisición, la prohibición sí dice, explícitamente, enseñar.
El 5 de marzo de 1616, la Congregación General del Index, publicó un decreto en el que señalaba que la doctrina que plantea la inmovilidad del Sol y el movimiento de la Tierra, es falsa y opuesta a las Sagradas Escrituras, por lo que “… para que esta opinión no continúe difundiéndose para perjuicio de la verdad católica, la Santa Congregación ha decretado que De Revolutionibus Orbium Coelestium del citado Nicolás Copérnico y Sobre Job de Diego de Zúñiga queden suspendidos hasta que se les corrija…”.
Galileo se mantuvo alejado de la astronomía hasta el año 1618 en el que aparecieron tres cometas. En 1619 Oratio Grassi publicó un tratado sobre los cometas en el que se acogía a las explicaciones de Tycho Brahe, el cual fue contestado por Mario Guiducci, amigo de Galileo en una conferencia que finalmente se convirtió en el libro Discorso delle comete , en el que atacaba la posición de Grassi. Los jesuitas vieron, seguramente con razón, la mano de Galileo tras el escrito de Guiducci, y contestaron en la Libra Astronomica ac Philosophica , firmado por Lotario Sarsi Sigensano, anagrama de Oratio Grassi Salonensi. En este escrito se atacaba abiertamente a Galileo haciendo a un lado a Guiducci, lo que provocó que Galileo empezara a redactar su respuesta, en la cual trabajó hasta 1623, año en que apareció bajo el título Il Saggiatore , que representa, más allá de su objetivo específico de discurrir sobre los cometas, una extraordinaria puesta en discurso de la vasta concepción metodológica galileana. Como antes de salir publicado, se eligió como papa a Maffeo Barberini, quien además de ser florentino era un hombre con merecida fama de intelectual, Galileo le dedicó el libro.
Considerando Galileo que con la llegada del nuevo papa, conocido por la posteridad como Urbano VIII, soplaban tiempos de libertad, se abocó, desde 1624 hasta 1630, a redactar la más famosa, por diversas razones, de sus obras: el Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano . El título que Galileo había planeado era Dialogo sulle maree , pues seguía pensando que su teoría de las mareas era el argumento clave a favor del heliocentrismo. Después de muchas dificultades, el libro aparece publicado a principios de 1632, para agosto de ese año es confiscado por la Inquisición y el primero de octubre Galileo es citado a comparecer, a lo largo de ese mes, en Roma.
Galileo no se presentó inmediatamente, aduciendo problemas de salud, lo cual molestó a las autoridades eclesiásticas, que en enero de 1633 le enviaron al inquisidor de Florencia una carta en la que señalaban que en la “… Congregación del Santo Oficio se ha comentado desfavorablemente que Galileo no haya obedecido prontamente al mandato de acudir a Roma… por tanto… si no obedece en seguida se enviará ahí un Comisario con medios para detenerlo y conducirlo a las cárceles de este supremo Tribunal, ligado con hierros si es preciso…”.
El 20 de enero Galileo partió hacia Roma, aunque no llegó sino hasta el 13 de febrero, dos días antes de su cumpleaños número 69. Se hospedó en casa de Nicolini, el embajador toscano, recibiendo la orden de comparecer el 12 de abril, ante el Tribunal del Santo Oficio. El tiempo que media entre el primer interrogatorio y el segundo, el 30 de ese mismo mes, Galileo está en calidad de prisionero, no en las cárceles del Santo Oficio sino en las habitaciones del fiscal. En este segundo interrogatorio, Galileo hace una declaración en la que reconoce que su libro Dialogo sopra i due massimi sistemi del mondo, parece defender el copernicanismo, aunque esa no era su intención. Hecha esta confesión, se le permite regresar a casa del embajador Nicolini, hasta el 10 de mayo en que es convocado nuevamente y en esta ocasión presenta una defensa escrita en la que termina pidiendo clemencia. El 21 de junio Galileo vuelve a comparecer siendo sometido a un riguroso examen en el que declara no tener ni haber tenido “… esta opinión de Copérnico desde que me fue ordenado que la abandonara, por lo demás, estoy aquí en sus manos, hagan lo que les plazca”. Al día siguiente le fue leída la sentencia, que sólo fue firmada por siete de los diez jueces. La sentencia establecía que Galileo fue encontrado “vehementemente sospechoso de herejía”, que era un término legal que no consistía en la sospecha de un crimen, sino que era una categoría específica de crimen, e incluía su prisión formal, la prohibición de su libro, además de algunas saludables penitencias. Oída la sentencia, en la sala del convento de Santa María de Minerva, Galileo, de rodillas, pronunció su abjuración pública: “Yo Galileo Galilei, hijo del difunto Vincenzo Galilei, florentino, de setenta años de edad, constituido personalmente en juicio y arrodillado ante vosotros, eminentísimos y reverendísimos cardenales de la Iglesia Universal Cristiana, inquisidores generales contra la malicia herética, teniendo ante mis ojos los Santos y Sagrados Evangelios que toco con mis manos, juro que he creído siempre, que creo ahora y que, Dios mediante creeré en el futuro, todo lo que sostiene, practica y enseña la santa Iglesia Católica Apostólica Romana… Yo Galileo Galilei, supraescrito, he abjurado, jurado, prometido y me he obligado como figura más arriba; y en testimonio de la verdad he escrito la presente cédula de abjuración y la he recitado palabra por palabra en Roma, en el convento de Minerva, este 22 de junio de 1633”.
La prisión formal de la sentencia se convirtió, a partir del 30 de junio, en confinamiento en casa del Arzobispo de Siena y más tarde se le permitió trasladarse a su villa en Arcetri, donde regresó al trabajo en la que había sido su pasión de juventud, antes de entrar en su lucha por el copernicanismo, la física terrestre. Para 1636, Galileo tiene terminado los Discorsi e Dimostrazione matematiche intorno a due nuove scienze, attinnenti alla meccanica e i movimenti localli , en los que, en las primeras dos jornadas se convierte en precursor de la física de materiales y en las inmortales tercera y cuarta jornadas, Galileo funda la moderna ciencia del movimiento con la construcción de su cinemática. Fueron publicados, en 1638, en Leyden.
La noche del 8 de enero de 1642, a la edad de 77 años y casi once meses, fallece Galileo en Arcetri y sus restos son trasladados a Florencia para ser enterrados en la iglesia de la Santa Croce junto a los de, entre otros, Miguel Ángel.
La vida de Galileo parece resumirse en las palabras de su padre:
“Yo deseo… que se me permita plantear cuestiones libremente… pues esto es lo que verdaderamente conviene a quienes buscan la verdad de las cosas”.
La fuente arriba reseñada