lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los grandes números

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El mayor misterio que rodea a los valores de las constantes de la naturaleza es sin duda la ubicuidad de algunos números enormes que aparecen en una variedad de consideraciones aparentemente inconexas. El número de Eddington es un ejemplo notable. El número total de protones que hay     dentro del alcance del universo observable esta próximo al número

1080

Si preguntamos ahora por la razón entre las intensidades de las fuerzas electromagnéticas y gravitatoria entre dos protones, la respuesta no depende de su separación, sino que es aproximadamente igual a

1040

En un misterio. Es bastante habitual que los números puros que incluyen las constantes de la naturaleza difieran de 1 en un factor del orden de 102, ¡pero 1040, y su cuadrado 1080, es rarísimo! Y esto no es todo. Si seguimos a Max Planck y calculamos en valor estimado para la “acción” del universo observable en unidades fundamentales de Planck para la acción, obtenemos.

10120

Leer más

Misterios que debemos desvelar.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Universo entero es energía: En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.

La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad, sin energía que hiciera el trabajo más duro, no evolucionaría en el bienestar social y del saber.

De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas que, relacionados, de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos, se presentan fragmentados, divididos en disciplinas dispares y no unificadas, y, los científicos que trabajan en cada una de ellas, están muy ocupados para leer y preocuparse por resultados obtenidos en otros estudios y ámbitos, con lo cual, reina una especie de caos que impide un mejor aprovechamiento de los conocimientos que ahora dispersos, tienen una relación directa los unos con los otros.

Los geólogos, por ejemplo, al tratar de comprender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.

Leer más

La Vía Láctea

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El que veamos el cielo nocturno lleno de estrellas sustenta la ilusión de que el espacio inmenso del universo ha de estar también uniformemente lleno de ellas. Tal ilusión es tan persuasiva que los astrónomos no pudieron demostrar concluyentemente hasta este siglo que las estrellas forman parte de galaxias («universos islas») y que las galaxias son los principales habitantes del cosmos.

Si pudiésemos salir de nuestra Galaxia, veríamos que es un inmenso disco espiral cuyos brazos difusos se retuercen alrededor de una masa estelar central, en cuyo interior se oculta el misterioso núcleo galáctico. Señala la frontera de esa masa central un anillo de nubes de hidrógeno molecular, densas y grumosas. Si mirásemos detenidamente, veríamos que los brazos se hallan delineados por unas estrellas azules brillantes y que hay en ellos polvo y gas abundantemente concentrados en nebulosas formadoras de estrellas. Nuestro sol se encuentra situado en el borde interior de uno de esos brazos, el brazo de Orión, y es una estrella más entre los cientos de miles de millones que forman la galaxia.

Pero como el párrafo anterior corresponde tan sólo a una ilusión, entonces, pongámonos un poco más aterrizados y intentemos describir lo que cualquier mortal puede distinguir de nuestro cielo desde la Tierra; veamos si ello nos resulta. En una noche despejada de fines de invierno, a eso de las 10 de la noche -por lo menos así siempre me ha parecido- podemos disfrutar de uno de los espectáculos más bello que la naturaleza nos ofrece: la Vía Láctea. Eso sí, que es necesario mirar al cielo en un sitio alejado de las grandes urbes y en una noche en que la Luna no sea nuestra compañera. Después de cinco a diez minutos nuestros ojos se adaptan a la oscuridad y podremos contemplar una franja blanquecina que cruza el cielo dividiéndolo en dos partes iguales. Se trata de nuestra Galaxia (así, con mayúscula para diferenciarla de las otras galaxias).

Leer más

¡La Física! Tiene tantos secretos…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo.  En realidad, los electrones no eran igualmente deficitarios.  Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado.  Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas.  En ese caso, ¿qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas.  En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.

Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida.  Esa misteriosa segunda partícula tenía propiedades bastante extrañas.  No poseía carga ni masa.  Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía.  A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Leer más

¿Nos sacará el LHC del apuro?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por P. Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electro débil (Weinberg-Salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa  los W+, W, Zº y fotón que llevan la fuerza electro-débil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Leer más