viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Otros aspectos de la Relatividad

Autor por Shalafi    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En alguna ocasión (como contrapunto) he puesto el ejemplo del principio de relatividad contrario a lo que acabo de explicar: el niño que viaja con su padre en un tren que marcha a la velocidad de 80 Km/h. Ambos están asomados por la ventanilla del tren. El niño, en el momento de pasar junto a la estación (en la que el jefe de estación parado en el andén, observa el paso del tren), arroja un pelota por la ventanilla que sale disparada de su mano, en la misma dirección de la marcha del tren, a 20 Km/h. Ahora, tanto el padre del niño como el jefe de estación, tienen un aparato que mide la velocidad de la pelota. El resultado es dispar: el jefe de estación ve que su aparato estima la velocidad de la pelota en 100 Km/h, mientras que el padre del niño la sitúa en 20 km/h. La explicación es sencilla. El aparato del jefe de estación, parado e inmóvil en sus manos al medir la velocidad de la pelota obtiene el resultado de la suma de la velocidad del tren (80 Km/h) y de la velocidad de impulso del lanzamiento (20 Km/h), pero el padre del niño, montado en el tren que marcha a 80 Km/h, está en movimiento, y su aparato también, con lo cual sólo puede medir la velocidad de lanzamiento (20 Km/h). Así que las dos mediciones del mismo fenómeno nos ha dado un resultado muy diferente, todo vez que depende del observador y de que esté en reposo o en movimiento.

Sin embargo, la velocidad de la luz es invariante, y si pudiéramos suponer que el niño lanzaba un rayo de luz en lugar de una pelota, tanto el jefe de estación como el padre del niño habrían medido la misma velocidad. La luz corre siempre lo mismo, independientemente de que su fuente esté parada o en movimiento, o de que el observador que la  mida esté en reposo o en movimiento. Sin embargo, el fenómeno de ralentización del tiempo, cuando se viaja a velocidades relativistas, es otra historia.

La imagen espaciotemporal fue introducida por primera vez por Hermann Minkowski (1.864 – 1.909), que era un matemático extraordinariamente bueno y original. Casualmente él fue también uno de los profesores de Einstein en el ETH, Instituto Federal de Tecnología de Zurich, a finales de la última década del siglo XIX.

De hecho, la idea misma del espacio-tiempo es de Minkowski, que ya en 1.908 escribía: “En lo sucesivo, el espacio por sí solo y el tiempo por sí solo están condenados a desvanecerse en meras sombras, y sólo un tipo de unión entre ambos conservará una realidad independiente“. Se deduce de estas palabras que Minkowski, cuando conoció la teoría de la relatividad de Einstein sacó sus propias consecuencias, y a pesar de las maravillosas intuiciones físicas de su alumno y de las excelentes contribuciones de Lorente y Poincaré, fue él (Minkowski) el que aportó un punto de vista fundamental y revolucionario, el espacio-tiempo, la geometría subyacente en la teoría de la relatividad especial.

Sumergirse en este tema, sin que nos demos cuenta, nos puede llevar a plantearnos complejos tales como que la geometría de Minkowski tiene grupos de simetría tan grandes como el que tiene el espacio-tiempo G de la física galileana, y no sólo están todos los puntos M (Minkowski) en pie de igualdad, sino que todas las velocidades posibles (direcciones de género tiempo que apuntan al futuro) están también en pie de igualdad entre sí.

Para evitar meterme en un callejón sin salida (para mí), dejaré aquí el comentario que, sin que pueda impedirlo, cada vez, por sí solo (parece tener vida propia) se pone más complejo hasta sobrepasar mis limitados conocimientos.

Sobre el modelo estándar de la física de partículas. Los orígenes de la moderna física de partículas.

La ecuación de Dirac para el electrón supuso un momento crucial para la física en muchos aspectos. En 1.928, cuando Dirac propuso su ecuación, las únicas partículas conocidas para la ciencia eran los electrones, los protones y los fotones. Las ecuaciones de Maxwell libres describen el fotón (como fue previsto por Einstein en 1.905) en un primer trabajo cuyas ideas fueron desarrolladas por Einstein, Bose y otros, hasta que en 1.927 Jordan y Pauli proporcionaron un esquema matemático global para describir los fotones libres de acuerdo con la teoría de Maxwell para el campo libre cuantizado.

Además, tanto el protón como el electrón, parecían estar muy bien descritos por las ecuaciones de Dirac. La interacción electromagnética, que describe la influencia de los fotones sobre los electrones y los protones, estaba excepcionalmente tratada mediante la receta de Dirac, a saber, mediante la idea gauge (tal como fue introducida básicamente por Weyl en 1.918), y el propio Dirac ya había empezado a construir el 1.927 una formulación de una teoría completa de los electrones (o protones) en interacción con protones.

Así pues, todas las herramientas básicas parecían estar más o menos a punto para la descripción de todas las partículas conocidas de la naturaleza, junto con sus más destacadas interacciones.

Los físicos de la época no eran tan ilusos como para pensar que todo aquello les pudiera llevar pronto a una “teoría del todo”. Eran conscientes de que, ni las fuerzas necesarias para mantener unidos los núcleos (las que ahora llamamos nuclear fuerte) ni los mecanismos responsables de la desintegración radiactiva (ahora fuerza nuclear débil) podrían acomodarse sin importantes avances adicionales.

Allí algo no estaba bien, ya que si los electrones y los protones estilo Dirac, que sólo interaccionaban electromagnéticamente, fueran los únicos ingredientes de los átomos, incluyendo sus núcleos, entonces todos los núcleos ordinarios (excepto el simple protón que constituye el núcleo de hidrógeno) se desintegrarían al instante debido a la repulsión electrostática de las cargas positivas predominantes.

¡Tenía que estar actuando alguna otra cosa desconocida, algo que explicara una fuerte influencia atractiva dentro del núcleo! En 1.932, Chadwick descubrió el neutrón, y se comprendió por fin que el modelo protón/electrón para el núcleo, que había sido popular hasta entonces, debía ser reemplazado por otro en el que los protones y los neutrones estarían presentes, y donde una fuerte interacción protón-neutrón mantendría el núcleo unido.

Pero esta fuerza fuerte no era lo único que faltaba en el conocimiento de la época.

La radiactividad del uranio se conocía desde las observaciones de Henri Becquerel en 1.896, y se presentaba como el resultado de otra interacción (la fuerza débil) diferente de la fuerte y de la electromagnética. Incluso un neutrón, si se deja libre, sufriría una desintegración radiactiva en un periodo de unos quince minutos.

Uno de los misteriosos productos de la radiactividad era el evasivo neutrino, propuesto como hipótesis provisional por Pauli en 1.929, aunque no fue obserado directamente hasta 1.956.

Ahora, las cosas se conocen mejor y se dispone de una imagen más completa conocida como modelo estándar de la física de partículas. Este modelo parece acoger casi todo el comportamiento observado concerniente al vasto conjunto de partículas que hoy conocemos. Al fotón, el electrón, el protón, el positrón y el neutrón, se han añadido el muón y los diversos neutrinos, los piones (predichos por Yukawa en 1.934), los kaones, los lambdas, los sigmas y la celebradamente predicha por Gell-Mann, la omega menos.

El antiprotón fue directamente observado en 1.955, y el antineutrón en 1.956. hay nuevos tipos de entidades conocidas como los quarks, gluones, bosones W+, W y Z0; hay vastas hordas de partículas cuya existencia es tan fugaz que no han sido nunca directamente observadas, por lo que suelen llamar “resonancias”.

El formalismo de la teoría moderna exige así mismo entidades transitorias llamadas partículas “virtuales”, y también cantidades conocidas como “fantasmas” que están aún más lejos de poder ser observadas en directo. Existe un número desmesurado de partículas propuestas (aún no observadas) que son predichas por ciertos modelos teóricos, aunque no son en absoluto consecuencias del andamiaje general de la física de partículas aceptada: a saber, bosones X, axiones, fotinos, gluinos, monopolos magnéticos, dilatones, etc.

Está también la misteriosa partícula de Higgs (aún no observada) cuya existencia, de una u otra forma, es esencial para la física de partículas actual, donde la partícula de Higgs se considera responsable de la masa de todas las partículas.

No he mencionado aquí el gravitón, la hipotética partícula mediadora de la gravitación, toda vez que la gravedad no está inmersa en el modelo estándar de la física, sino que está descrita por la relatividad general de Einstein.

Es bien sabido que la mecánica cuántica (el universo de las partículas subatómicas) y la relatividad general (el universo de los grandes objetos cosmológicos), de momento no han sido unidas; se rechazan mutuamente con una ferocidad asombrosa.

Parece que la teoría de cuerdas no sólo no rechaza estas dos teorías antagónicas, sino que en sus más altas dimensiones las acoge de manera natural, y ambas se complementan para formar un todo en el que tienen cabida el universo de las partículas, de la gravedad, de las fuerzas fundamentales y de la materia.

Es bonito pensar que un día en el futuro se contará con ese modelo completo que, sin estridencias, dé cabida a todo y nos lo pueda explicar todo.

Esto es todo lo que ha dado de sí mis pensamientos de estos de días de febrero de 2.007 en mis ratos libres. Como veréis, no se sigue ningún patrón fijo ni una idea preconcebida. He plasmado cualquier tema o idea que, en cada momento, me pasó por la cabeza.

Espero como siempre, que algunos de los comentarios os agraden, y dada la diversidad de los temas, es probable que así sea.

Dentro de los temas tratados, comento sobre los varios diluvios de los que la Humanidad dejó leyendas, y me parece una señal de que pudieran no ser los últimos. Si nuestro comportamiento sigue siendo tan irresponsable, puede que el próximo diluvio esté cerca.

Dedico estas páginas a mis amigos de amigos de la Asociación Cultural Amigos de Física 137 e/hc que, humildemente presido, y, recientemente, ha sido nombrada de manera oficial como Asociación Colaboradora del Nodo Español AIA-IYA2009 Año Internacional de la Astronomía.

emilio silvera.

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting