jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Tendrá nuestro Universo más Dimensiones?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mirando al cielo estrellado, o desde la orilla, la inmensidad del océano que se pierde en el horizonte, nos podríamos sentir insignificantes.  Sin embargo, no es así como debemos mirarlo.  He dicho alguna vez que, todo lo grande está hecho de cosas pequeñas, y, esa afirmación nos dá la respuesta.  Formamos parte de algo muy grande:  El Universo.

Estamos en un punto, o en un nivel de sabiduría aceptable pero insuficiente, es mucho el camino que nos queda por recorrer y, como dice Freund, la energía necesaria para explorar la décima dimensión es mil billones de veces mayor que la energía  que puede producirse en nuestros mayores colisionadores de átomos.  La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.

Energías del tal calibre, que sepamos, solo han estado disponibles en el instante de la creación del Universo, en su nacimiento, en eso que llamamos Big Bang.  Solamente allí estuvo presente la energía del Hiperespacio de diez dimensiones y, por eso se suele decir que, cuando se logre la teoría de cuerdas sabemos y podremos desvelar el secreto del origen del Universo.

A los físicos teóricos siempre los resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.

Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente n universo perfecto de diez dimensiones, decadimensional, un mundo en el que el viaje interdimensional era posible.  Sin embargo, ese mundo decadimensional era intestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.

El Universo en el que vivimos nació en ese cataclismo cósmico. Nuestro Universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexadimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.

Eso podría explicar el origen del Big Bang, y, si la teoría es correcta, demuestra que la rápida expansión del Universo fue simple consecuencia de un cataclismo cósmico mucho mayor, la ruptura de los propios espacio y tiempo.  La energía que impulsa la expansión observada del Universo se halla entonces en el colpaso del espacio y el tiempo de diez dimensiones.  Según la teoría, las estrellas y las Galaxias distantes están alejándose de nosotras a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.

Esta teoría predice que nuestro Universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en una pequeña bola de seis dimensiones (en la escala de Planck) mi. pequeña para ser observada.

Ese Universo hexadimensional, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia, nuestra salvación.

Leer más

Las Dimensiones más altas simplifican la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para ver cómo dimensiones más altas simplifican las leyes de la Naturaleza, recordemos que un objeto tiene longitud, anchura y altura.  Puesto que tenemos libertad para girar un objeto 90º, podemos transformar su longitud en anchura y su anchura en altura.   Mediante una simple rotación, podemos intercambiar cualquiera de las tres dimensiones espaciales.

Ahora bien, si el tiempo es la cuarta dimensión, entonces es posible hacer “rotaciones” que convierten el espacio en tiempo y el tiempo en espacio.  Estas rotaciones tetradimensionales son precisamente las distorsiones del espacio y del tiempo exigidas por la relatividad especial.

En otras palabras, espacio y tiempo se mezclan de una forma esencial, gobernada por la relatividad.  El significado del tiempo como la cuarta dimensión es que pueden hacerse relaciones entre el tiempo y el espacio de una forma matemáticamente precisa.  A partir de entonces, deben ser tratados como dos aspectos de la misma magnitud: el espacio-tiempo.

Así han quedado unificadas las leyes de la Naturaleza al pasar de tres a cuatro dimensiones.

La discusión de la unificación de las leyes de la Naturaleza fue más bien abstracta, y lo habría seguido siendo si Einstein no hubiese dado el siguiente paso decisivo.  Él comprendió que si el espacio y el tiempo pueden unificarse en una sola entidad, llamada espaciotiempo, entonces quizá la materia y la energía pueden unirse también en una relación dialéctica.  Si las reglas pueden contraerse y los relojes pueden frenarse, razonó, entonces cualquier cosa que midamos con regla y relojes también debe cambiar.

Sin embargo, casi todo en el laboratorio de un físico se mide con regla y relojes. Esto significa que los físicos tendrán que recalibrar todas las magnitudes del laboratorio que una vez dieron por hecho que eran constantes.

En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo.  Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía.  No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades se distorsionan.  Se contrae como un acordeón y los relojes en su interior se frenan.

Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando reacelera. Pero  ¿de dónde procede este exceso de masa?  Y él concluyó que procedía de la energía.

Esto tuvo consecuencias perturbadoras.  Dos de los grandes descubrimientos de la física del siglo XIX fueron la conversación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomadas por separado, no cambian.  Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente.  La energía total (y la masa total) antes y después del choque es la misma.

Leer más