viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Dónde están los genios? Necesitamos que aparezcan algunos para...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Siempre ocurre lo mismo, podemos tener un genio delante de nuestras narices y no saber verlo.  Jacob Bronowski escribió:

“El genio de hombres como Newton y Einstein reside en que saben hacer preguntas inocentes y transparentes que resultan tener respuestas revolucionarias.”

Einstein era un hombre que podía plantear cuestiones tremendamente simples, como por ejemplo: “¿Qué aspecto tendría un rayo de luz si uno pudiera alcanzarlo?

Así de “sencillas” o de complicadas pueden ser las cosas, solo se trata de quién responda la pregunta.

¿Cuántos con mejor o peor fortuna han tratado de explicar lo que es el tiempo?

Lo vemos o sentimos pasar ante nuestros ojos, transcurre incesante, nos trae el día y la noche una y otra vez, pasan los años con el transcurso del tiempo ¿Pero qué es?

¡Hay tantas cosas que no sabemos explicar que si lo pensamos, terminamos profundamente frustrados!

Ya se ha contado muchas veces (también yo) que, en 1.905, disponiendo de mucho tiempo libre en la oficina de Patentes, Einstein analizó cuidadosamente las ecuaciones de campo de Maxwell, le añadió algunos ingredientes de Lorentz y Poincaré y fue llevado a postular el principio de relatividad especial: la velocidad de la luz es la misma en todos los sistemas de referencia en movimiento uniforme.  El principio de apariencia inocente es uno de los mayores logros de la mente humana.  Algunos han dicho que, junto con la Ley de gravitación de Newton, se sitúa como una de las más grandes creaciones científicas de todos los tiempos.  ¿Quién soy yo para rebatirlo?

Muchos han sido los aspectos interesantes deducidos a partir de la teoría relativista especial, y, el que más ha llamado siempre mi atención es aquel que nos dice que el tiempo es la cuarta dimensión y que las leyes de la Naturaleza se simplifican y unifican en dimensiones más altas.

Fue Minkowski, un antiguo profesor de Einstein, el que, al leer la teoría de éste, introdujo el concepto de cuarta dimensión referida al tiempo y superó así el concepto de tiempo que se remontaba hasta Aristóteles.  El espacio y el tiempo quedaron así irremediablemente unidos como : Espaciotiempo.

Así pasamos de un mundo de tres dimensiones a un Universo de cuatro.  La mente humana, pasó entonces, a tener una visión más amplia del Universo.

También cambiaron conceptos como los de la masa y la energía que, resultaron ser, la misma cosa.   Y, ¿Qué decir de la posibilidad real de frenar el paso del tiempo al viajar a velocidades relativistas?

¡Son tantas maravillas!

Para ver cómo dimensiones más altas simplifican las leyes de la Naturaleza, recordemos que un objeto tiene longitud, anchura y altura.  Puesto que tenemos libertad para girar un objeto 90º, podemos transformar su longitud en anchura y su anchura en altura.   Mediante una simple rotación, podemos intercambiar cualquiera de las tres dimensiones espaciales.

Ahora bien, si el tiempo es la cuarta dimensión, entonces es posible hacer “rotaciones” que convierten el espacio en tiempo y el tiempo en espacio.  Estas rotaciones tetradimensionales son precisamente las distorsiones del espacio y del tiempo exigidas por la relatividad especial. En otras palabras, espacio y tiempo se mezclan de una forma esencial, gobernada por la relatividad.  El significado del tiempo como la cuarta dimensión es que pueden hacerse relaciones entre el tiempo y el espacio de una forma matemáticamente precisa.  A partir de entonces, deben ser tratados como dos aspectos de la misma magnitud: el espacio-tiempo.

Así han quedado unificadas las leyes de la Naturaleza al pasar de tres a cuatro dimensiones.

La discusión de la unificación de las leyes de la Naturaleza fue más bien abstracta, y lo habría seguido siendo si Einstein no hubiese dado el siguiente paso decisivo.  Él comprendió que si el espacio y el tiempo pueden unificarse en una sola entidad, llamada espaciotiempo, entonces quizá la materia y la energía pueden unirse también en una relación dialéctica.  Si las reglas pueden contraerse y los relojes pueden frenarse, razonó, entonces cualquier cosa que midamos con regla y relojes también debe cambiar.

Sin embargo, casi todo en el laboratorio de un físico se mide con regla y relojes. Esto significa que los físicos tendrán que recalibrar todas las magnitudes del laboratorio que una vez dieron por hecho que eran constantes.

En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo.  Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía.  No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades se distorsionan.  Se contrae como un acordeón y los relojes en su interior se frenan.

Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando reacelera. Pero  ¿de dónde procede este exceso de masa?  Y él concluyó que procedía de la energía.

Esto tuvo consecuencias perturbadoras.  Dos de los grandes descubrimientos de la física del siglo XIX fueron la conversación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomadas por separado, no cambian.  Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente.  La energía total (y la masa total) antes y después del choque es la misma.

Sin embargo, Einstein decía ahora que la energía del automóvil podía convertirse en masa (un nuevo principio de conservación que decía que la suma total de la masa y la energía debe siempre permanecer constante.  La materia no desaparece repentinamente, ni la energía brota de la nada.  En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.

Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2.  Puesto que la velocidad de la luz al cuadrado (C2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía.  Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química.  La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza.  Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por la otra.  El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX.  Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.

Einstein completó su teoría de la relatividad con una segunda etapa que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.

Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor.  Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que esencialmente afirma:

Materia-energía determina  la curvatura del espacio-tiempo

Esa ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones).  De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.

Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría.

Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático y Einstein si lo era).  Carecía de una versión de los campos de Faraday para la Gravedad.  Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein.  Así que, finalmente, fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting