Dic
10
Como decía Hilbert: Tenemos que saber, ¡sabremos!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Mirando al cielo estrellado, o desde la orilla, la inmensidad del océano que se pierde en el horizonte, nos podríamos sentir insignificantes. Sin embargo, no es así como deberíamos mirarlo. He dicho algunas veces que todo lo grande está hecho de cosas pequeñas, y esa afirmación nos da la respuesta. Formamos parte de algo muy grande: el universo.
Estamos en un nivel de sabiduría aceptable pero insuficiente; es mucho el camino que nos queda por recorrer y, como dice Freund, la energía necesaria ara explorar la décima dimensión es mis billones de veces mayor que la energía que puede producirse en nuestros mayores colisionadores de átomos. La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.
Energías de tal calibre, que sepamos sólo han estado disponibles en el instante de la creación del universo, en su nacimiento, en eso que llamamos Big Bang. Solamente allí estuvo presente la energía del hiperespacio de diez dimensiones, y por eso se suele decir que cuando llegue la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del universo. A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.
Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, decadimensional, un mundo en el que el viaje interdimensional era posible. Sin embargo, ese mundo decadimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.
Dic
10
Será mejor no utilizar la palabra “imposible”
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general; mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas, y apareció Maxwell que finalmente formuló la teoría.
Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático, y Einstein sí lo era). Carecía de una versión de los campos de Faraday para la gravedad. Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein. Así que finalmente fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.
“¡Qué extraño sería que la teoría final se descubriera durante nuestra vida! El descubrimiento de las leyes finales de la naturaleza marcará una discontinuidad en la historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna del siglo XVII. ¿Podemos imaginar ahora cómo sería?”
Steven Weinberg
¿Es la belleza un principio físico?
La teoría de supercuerdas nos da una formulación convincente de la teoría del universo, sin embargo, el problema fundamental radica en que una comprobación de dicha teoría está más allá de nuestras posibilidades actuales. De hecho, la misma teoría predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1016 miles de millones de electronvoltios, que como sabéis, es alrededor de mil billones de veces mayor que las energía actualmente disponibles en nuestros aceleradores de partículas.
Ya he comentado otras veces que el físico David Gross (el de más edad de los miembros conocidos como el cuarteto de cuerdas y autores de la teoría llamada la cuerda heterótica) dijo en una ocasión: “El coste de generar esta fantástica energía necesitaría el dinero de las tesorerías de todos los países del mundo juntos, y quizá no llegara. Es verdaderamente astronómico.“
Dic
10
Una curiosidad
por Emilio Silvera ~ Clasificado en Química ~ Comments (0)
En alguna ocasión todos hemos oído mencionar la palabra “gases nobles”, y sin embargo no siempre sabemos lo que son y el por qué le llaman así.
Los elementos que reaccionan difícilmente o que no reaccionan en absoluto con otros elementos se denominan “inertes”. El nitrógeno y el platino son ejemplos de elementos inertes.
En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química. Estos nuevos gases (helio, neón, argón, kripton, xenón y radón) son más inertes que cualquier otro elemento y se agrupan bajo el nombre de gases inertes.
Los elementos inertes reciben a veces el calificativo de “nobles” porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplos de “metales nobles”, y por la misma razón se llaman a veces “gases nobles” a los gases inertes. Hasta 1.962, el nombre más común era el de gases inertes, quizá porque lo de nobles parecía poco apropiados en sociedades democráticas.
La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene 8 electrones. Así la distribución electrónica del neón es (2,8) y la del argón (2,8,8). Como la adición o sustracción de electrones rompe esta distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no pueden producirse reacciones químicas y que estos elementos son inertes.
Dic
10
¡Hasta dónde pretendemos llegar?
por Emilio Silvera ~ Clasificado en Física ~ Comments (2)
Hasta el momento de la creación
Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. Los nuevos supercolisionadores superconductores proporcionarán un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.
Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.
Por encima de este punto –antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo- no hay núcleos atómicos estables. El nivel de energía en el ambiente es mayor que la energía de unión nuclear.
Por consiguiente, todos los núcleos que se forman, se destruyen de nuevo rápidamente.
Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos. Aunque en esa época el Universo es más denso que las rocas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos. Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, ahora pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.
Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor parte de la materia como si no existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase. Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).