lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




SE habrá conseguido la meta del AIA 2009

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Año Internacional de la Astronomía, se impuso muchos objetivos, el de llevar el Universo a todos. Explicar lo que es y lo que en él ocurre. Generalmente, la gente sencilla no sabe, en realidad, como se forman y nacen las estrellas, como viven y al final de sus “vidas” que es lo que ocurre, en que se transforman y que pasa con la materia que las conformaba, en qué se convierte.

Si preguntamos por el significado del Big Bang, la expansión del universo, cómo nacen y mueren las estrellas, qué es una singularidad, a qué se refiere la libertad asintótica de los quarks, qué son los nucleones, qué significan las constantes universales, qué es la mecánica quántica, el modelo estándar, la relatividad general, el significado de E = mc2, el principio de incertidumbre, la función de onda de Schrödinger, la exclusión de Pauli, el cuanto de acción, h, o el límite, la energía o tiempo de Planck…, cualquiera de estas cuestiones, todas tan importantes, serán desconocidas para el 99’99% de los encuestados. ¡Una auténtica calamidad!

Esa es la penosa realidad en la que estamos inmersos, y, precisamente, ese no conocer de la gente sencilla (que es la gran mayoría), es lo que ha llevado a nombrar el año 2009 para la celebración del Año INternacional de la Astronomía, y, desde luego, el despliegue que tan acontecimiento ha efectuado en todo el Mundo, es de elogiar.

Muchas han sido las personas que, científicos o aficionados, han unido su esfuerzo para llevar el Universo a todos y en los más dispares y distintos ámbitos, desde las mismas calles de las ciudades con telescopios para obervar los planetas, hasta cesudas conferencias en las Universidades.

En España, la región del Mundo que mejor conozco y en la que he tenido el honor de colaborar con éste memorable acontecimiento, han sido muchísimas las jornadas y las actividades que se han dedicado a llevar el Universo a la gente sin tener en cuenta el lugar o su nivel de conocimiento. Todos por igual, han dusfrutado de jornadas, de charlas, de conferencias, de festejos preparados de manera expresa para que, de una u otra manera, todos pudieran disfrutar y aprender sobre lo que en el cielo existe.

No pocas han sido las caras de asombro que a lo largo del Año Internacional he podido contemplar en chavales de Bachillerato que, al explicarles como se convertía una estrella masiva en una de Neutrones o en un Agujero Negro con densidad “infinita”, se maravillaban de que tal cosa pudiera ser posible. Y, también les llamó la atención el hecho de que, cuando una estrella muere al final de su ciclo, al explotar como supernova (por ejemplo) dejara sembrada una gran extensión del espacio por una Nebulosa compuesta por materiales complejos que a partir de ahí formarían nuevas estrellas, mundos y, con las debidas condiciones de atmósfera, radiación, humedad y agua líquida…hasta la vida podría surgir.

Muchos han sido los días que, dedicado al Año Internacional de la Astronomía, en España AIA 2009, he dedicado a dar charlas y conferencias por los distintos lugares o Centros de Cultura (Escuelas, Institutos, Casas de Cultura, Bibliotecas, Residencias de Ancianos, etc.), y, os puedo asegurar que, independientemente de los muchos kilómetros recorridos, y, las muchas horas hablando sin parar, la reacción de las personas asisitentes y sobre todo, sus caras de asombro al opir aquellas maravillas, me han pagado sobradamente el esfuerzo.

Algunos llegaron a preguntarme en algún pueblo perdido de la Sierra de Huelva, por qué no se caía la Luna y como se agunataban los planetas en el cielo. He disfrutado como nunca. La satisfacción de poder transmitir lo poco que sabes a los demás…es grande.

Dejo aquí un recuerdo de lleno de admiración, y, en forma de homenaje, a la Coordinadora del NODO Español en esta celebración del Año Internacional de la Astronomía 2009, Doña Montserrat Villar que, con su engañosa y delicada fragilidad, ha desarrollado un trabajo que, desde luego, se podría calificar sobradamente de sobresaliento. Su labor ha sido un ejemplo de bien hacer, de responsabilidad, y, sobre todo, una demostración de amor hacia su profesión que, como Astrofísica, la convierte en una de esas personas elegidas y destinadas a ser especiales, con ese don de poder transmitir a los demás cosas de importancia universal.

¡FELICIDADES! Amiga, tu trabajo bien hecho y el objetivo cumplido, pasarán a la historia de la Astronomía y ahí quedará escrito tu concurso para aquellos que nos seguirán y que podrán, en los archivos y hemerotecas, saber de tu obra.

Ahora remato con un poco de Astronomía como homenaje al Año que se nos va.

Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.

El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang (dicen) surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo.

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

La respuesta tan esperada en astronomía es el que alguien responda a la pregunta siguiente: ¿Qué es y donde está la energía y la materia oscura?

Sí, sabemos que su presencia puede ser inferida por sus efectos sobre los movimientos de las estrellas y galaxias, aunque no puede ser observada directamente debido a que emite poca o ninguna radiación. Se piensa que algo más del 90% de la masa del universo se encuentra en alguna forma de materia oscura. Existen evidencias de materia oscura en las galaxias espirales en sus curvas de rotación. La existencia de materia oscura en los cúmulos ricos de galaxias puede ser deducida por el movimiento de las galaxias constituyentes. Una parte de esta materia oscura puede encontrarse en forma de estrellas poco masivas u objetos con masa del orden de la de Júpiter; dicha materia normal se describe como bariónica (los bariones son los protones, neutrones y otras partículas formadoras de materia que podemos ver).  Por otra parte, también puede existir materia oscura en el espacio entre galaxias, ese espacio que llamamos vacío y que en realidad está abarrotado de partículas virtuales que aparecen sin saber de dónde y en manos de una millonésima de segundo desaparece sin que sepamos a dónde, y que podría hacer aumentar la densidad media del universo hasta la densidad crítica requerida para invertir la expansión actual.

Si la teoría del Big Bang es correcta, como parece que lo es, debe de existir una gran proporción de materia oscura en forma no bariónica (que no podemos ver), quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.500 millones de años que es la edad del universo.

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”.

Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura está situada en la quinta dimensión, y nos llegan sus efectos a través de fluctuaciones del “vacío”, que de alguna manera deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea.

Claro que mi pensamiento es eso, una teoría más de las muchas que circulan. A veces me sorprendo al escuchar como algunos astrofísicos de reconocido nombre, sin pudor alguno, dogmatizan hablando de estas cuestiones sobre las que no tienen la menor certeza.

De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia.

Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta.

Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado de materia viva a lugares distantes, dominar toda una galaxia, etc, tendrán que transcurrir algunos eones* de tiempo.

Hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados.

¿Qué maravillas tendremos dentro de cincuenta años? ¿Qué adelantos científicos se habrán alcanzado?

Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el universo. Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias.

Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa.  Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espaciotiempo.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

Cuando el espacio se curva, tenemos que acudir a la geometría que Einstein le pidió prestada a Riemann para formular su Relatividad general.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting