Dic
14
Evolución por la energía
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.
La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber.
De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.
Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.
Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.
Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.
La progresión lógica se realiza siguiendo una secuencia progresiva desde los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.
Dic
13
SE habrá conseguido la meta del AIA 2009
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
El Año Internacional de la Astronomía, se impuso muchos objetivos, el de llevar el Universo a todos. Explicar lo que es y lo que en él ocurre. Generalmente, la gente sencilla no sabe, en realidad, como se forman y nacen las estrellas, como viven y al final de sus “vidas” que es lo que ocurre, en que se transforman y que pasa con la materia que las conformaba, en qué se convierte.
Si preguntamos por el significado del Big Bang, la expansión del universo, cómo nacen y mueren las estrellas, qué es una singularidad, a qué se refiere la libertad asintótica de los quarks, qué son los nucleones, qué significan las constantes universales, qué es la mecánica quántica, el modelo estándar, la relatividad general, el significado de E = mc2, el principio de incertidumbre, la función de onda de Schrödinger, la exclusión de Pauli, el cuanto de acción, h, o el límite, la energía o tiempo de Planck…, cualquiera de estas cuestiones, todas tan importantes, serán desconocidas para el 99’99% de los encuestados. ¡Una auténtica calamidad!
Esa es la penosa realidad en la que estamos inmersos, y, precisamente, ese no conocer de la gente sencilla (que es la gran mayoría), es lo que ha llevado a nombrar el año 2009 para la celebración del Año INternacional de la Astronomía, y, desde luego, el despliegue que tan acontecimiento ha efectuado en todo el Mundo, es de elogiar.
Muchas han sido las personas que, científicos o aficionados, han unido su esfuerzo para llevar el Universo a todos y en los más dispares y distintos ámbitos, desde las mismas calles de las ciudades con telescopios para obervar los planetas, hasta cesudas conferencias en las Universidades.
En España, la región del Mundo que mejor conozco y en la que he tenido el honor de colaborar con éste memorable acontecimiento, han sido muchísimas las jornadas y las actividades que se han dedicado a llevar el Universo a la gente sin tener en cuenta el lugar o su nivel de conocimiento. Todos por igual, han dusfrutado de jornadas, de charlas, de conferencias, de festejos preparados de manera expresa para que, de una u otra manera, todos pudieran disfrutar y aprender sobre lo que en el cielo existe.
Dic
12
La Relatividad Especial…¡Qué cosas!
por Emilio Silvera ~ Clasificado en Física ~ Comments (1)
Luz, Velocidad, Tiempo y, relatividad
Aunque muchas veces comentado, trataré de nuevo el tema de la velocidad de la luz y sus implicaciones reales en el transcurso del tiempo. La relatividad del movimiento es, por una parte, la clave para comprender la teoría de Einstein, y al mismo tiempo una fuente potencial de confusión.
No es nada fácil dar una definición del tiempo, los intentos de hacerlo terminar a menudo dando vueltas y vueltas hasta llegar al punto de partida. Sin ir más lejos, en mi último trabajo (09/09/06) de título “Pasado, Presente y Futuro. Una ilusión llamada Tiempo”, intenté explicar lo que es el tiempo y hablé de él desde distintos ángulos y bajo distintos puntos de mira. Durante muchas páginas trate el tiempo y me remonte hasta el Big Bang como fuente de su nacimiento, allí, junto a su hermano el espacio, nació el tiempo.
Hablamos del reloj atómico de cesio-33, de la velocidad de la luz, de la fórmula matemática que explicaba la dilatación del tiempo a través de la velocidad, del tiempo de Planck, de las transformaciones de Lorentz, tiempo terrestre, tiempo dinámico, tiempo bariónico, tiempo estándar, tiempo universal, etc.
Podemos medir el tiempo en un reloj de luz pero nuestro objetivo es comprender cómo afecta el movimiento al transcurso del tiempo. Se conoce como “reloj de luz” al más sencillo del mundo y que consiste en dos pequeños espejos montados el uno frente al otro sobre un soporte, y entre ellos hay un único fotón de luz que salta del uno al otro. Si los espejos están separados unos 15 cm, el fotón tardará alrededor de una milmillonésima de segundo en realizar un viaje de ida y vuelta. Se puede considerar que el “tictac” de un reloj de luz se produce cada vez que un fotón hace un viaje de ida y vuelta completo. Mil millones de tictac indicarían que ha transcurrido un segundo.
Dic
12
El comienzo y el final ¿qué será del Universo?
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos de las cosas y se convierten en otra distinta, es un proceso irreversible.
En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.
Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.
Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.
Dic
12
¡Fascinante mundo subatómico!
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (4)
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1897 por el físico británico Josepth John Thomson (1856 – 1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
¡No por pequeño, se es insignificante!
Recordémoslo, todo lo grande está hecho de cosas pequeñas.
En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*.
Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.