Feb
4
De neutrinos y otras maravillas
por Emilio Silvera ~ Clasificado en Física ~ Comments (5)
Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo. En realidad, los electrones no eran igualmente deficitarios. Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado. Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas. En ese caso, ¿qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?
En 1922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas. En 1931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.
Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida. Esa misteriosa segunda partícula tenía propiedades bastante extrañas. No poseía carga ni masa. Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía. A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.
Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía. Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.
El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino. Como ya he comentado en otra página de este trabajo, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiples de una mitad según la dirección del giro. Ahora bien, el protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿qué sucede con la ley sobre conservación del momento angular? Aquí hay algún error. El protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra parte, el neutrino viene a solventar la cuestión.
Supongamos que la rotación del neutrón sea +½. Y admitamos también que la rotación del protón sea +½ y la del electrón -½, para dar un resultado neto de o. Demos ahora al neutrino una rotación de +½, y la balanza quedará equilibrada.
+½(n) = +½(p) – ½(e) + ½(neutrino)
Pero aun queda algo por equilibrar. Una sola partícula (el neutrón) ha formado dos partículas (el protón y el electrón), y, si incluimos el neutrino, tres partículas. Parece más razonable suponer que el neutrón se convierte en dos partículas y una antipartícula. En otras palabras: lo que realmente necesitamos equilibrar no es un neutrino, sino un antineutrino.
El propio neutrino surgiría de la conversación de un protón en un neutrón. Así, pues, los productos serían un neutrón (partícula), un positrón (antipartícula) y un neutrino (partícula). Esto también equilibra la balanza.
En otras palabras, la existencia de neutrinos y antineutrinos debería salvar no una, sino tres, importantes leyes de conservación: la conservación de la energía, la de conservación del espín y la de conservación de partícula/antipartícula.
Es importante conservar esas leyes puesto que parece estar presentes en toda clase de reacciones nucleares que no impliquen electrones o positrones, y sería muy útil si también se hallasen presentes en reacciones que incluyesen esas partículas.
Las más importantes conversiones protón-neutrón son las relaciones con las reacciones nucleares que se desarrollan en el Sol y en los astros. Por consiguiente, las estrellas emiten radiaciones rápidas de neutrinos, y se calcula que tal vez pierdan a causa de esto el 6 u 8 % de su energía. Pero eso, sería meternos en otra historia y, por mi parte, con la anterior explicación solo trataba de dar una muestra del ingenio del hombre que, como habréis visto, no es poco.
Desde que puedo recordar, he sido un amante de la Física. Me asombran cuestiones como la luz, su naturaleza de un conglomerado de colores, ondas y partículas, su velocidad que nos marca el límite del máximo que podemos correr en nuestro Universo, y en fin, muchos otros misterios que encierra esa cosa tan cotidiana que nos rodea y lo inunda todo haciendo posible que podamos ver por donde vamos, que las plantas vivan y emitan oxígeno o que nos calentemos. Realmente, sin luz, nuestra vida no sería posible.
Entonces, ¿qué es realmente la luz?
Muchos (casi todos) opinan que es algo inmaterial. Los objetos materiales, grandes o muy pequeños como las galaxias o los electrones, son materia. La luz, sin embargo, se cree que es inmaterial, dos rayos de luz se cruzan sin afectarse el uno al otro.
Sin embargo, yo que, desde luego, no soy un experto, opino en cambio que la luz, es simplemente una forma de energía lumínica, otra forma en la que se puede presentar la materia. Nosotros mismos, en última instancia, somos luz.
Está claro que, los estudiosos de la época antigua y medieval estaban por completo a oscuras acerca de la naturaleza de la luz. Especulaban sobre que consistía en partículas emitidas por objetos relucientes o tal vez por el mismo ojo. Establecieron el hecho de que la luz viajaba en línea recta, que se reflejaba en un espejo con un ángulo igual a aquel con el que el rayo choca con el espejo, y que un rayo de luz se inclina (se refracta) cuando pasa del aire al cristal, al agua o a cualquier otra sustancia transparente.
Cuando la luz entra en un cristal, o en alguna sustancia transparente, de una forma oblicua (es decir, en un ángulo respecto de la vertical), siempre se refracta en una dirección que forma un ángulo menor respecto de la vertical. La exacta relación entre el ángulo original y el ángulo reflejado fue elaborada por primera vez en 1.621 por el físico neerlandés Willerbrord Snell. No publicó sus hallazgos y el filósofo francés René Descartes descubrió la ley, independientemente, en 1637.
Los primeros experimentos importantes acerca de la naturaleza de la luz fueron llevados a cabo por Isaac Newton en 1666, al permitir que un rayo de luz entrase en una habitación oscura a través de una grieta e las persianas, cayendo oblicuamente sobre una cara de un prisma de cristal triangular. El rayo se refracta cuando entra en el cristal y se refracta aún más en la misma dirección cuando sale por una segunda cara del prisma. (Las dos refracciones en la misma dirección se originan por que los dos lados del prisma de se encuentran en ángulo en vez de en forma paralela, como sería el caso en una lámina ordinaria de cristal.)
Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada. Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo, verde, azul, y violeta, en este orden.
Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores. La amplia banda de sus componentes se denominó spectrum (palabra latina que significa “espectro” fantasma).
Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades.
Le surgieron y se planteó algunas inquietudes cuestiones. ¿Por qué se refractaban las partículas de luz verde más que los de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbase mutuamente, es decir, sin que se produjeran colisiones entre partículas?
En 1678, el físico neerlandés christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar los diversos difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire. La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción. Ello significaba que la luz violeta (la más sensible a este fenómeno) debía de tener una longitud de onda mas corta que la luz azul, ésta, más corta que la verde, y así sucesivamente.
Lo que permitía al ojo distinguir los colores eran esas diferencias entre longitudes de onda. Y, como es natural, si la luz estaba integrada por ondas, dos rayos podrían cruzarse sin dificultad alguna. (Las ondas sonoras y las del agua se cruzan continuamente sin perder sus respectivas identidades.)
Pero la teoría de Huyqhens sobre las ondas tampoco fue muy satisfactoria. No explicaba por qué se movían en línea recta los rayos luminosos; ni por qué proyectaban sobras recortadas; ni aclaraba por qué las ondas luminosas no podían rodear los obstáculos, del mismo modo que pueden hacerlo las ondas sonoras y de agua. Por añadidura, se objetaba que si la luz consistía en ondas, ¿cómo podía viajar por el vacío, ya que cruzaba el espacio desde el Sol y las Estrellas? ¿Cuál era esa mecánica ondulatoria?
emilio silvera
el 4 de febrero del 2010 a las 22:34
Estaba leyendo este artículo como si fuese una novela, (De lo ameno que resulta), y me he quedado chasqueado cuando al final haces una pregunta y ya no la contestas; esperaremos al próximo “capítulo”
el 5 de febrero del 2010 a las 7:58
Haces bien en preguntar, ya que, de esa manera tienes una posibilidad de obtener un respuesta y, en este caso, el inquieto y polifacético Huyghens, alla por el año 1678, no podía tener una idea de lo que era la mecánica ondulatoria que en realidad, es una formulación de la mecánica cuántica en la que la naturaleza dual onda-corpúsculo (complementariedad) de entidades como los electrones es descrita por la ecuación de Schrödinger.
Schrödinger estableció esta fórmula de la mecánica cuántica en 1926 y ese mismo año demostró que era equivalente a la mecánica matricial. Teniendo en cuenta la longitud de onda de De Broglie, Schrödinger postuló la mecánica ondulatoria, la cual mantiene la misma relación con la mecánica newtoniana que la que mantiene la óptica física con la óptica geométrica.
De todo eso, el amigo Christian Huygens, en su tiempo, no podía saber nada por estar aún por descubrir.
Bueno, al menos te he aclarado un poco tu curiosidad al quedar en blanco al final del artículo.
Saludos amigo Kike.
el 5 de febrero del 2010 a las 11:17
Gracias Maestro.
Esa dualidad que tiene la luz es como la sintesis de todas las leyes físicas; todo parece sencillo en su funcionamiento, pero a poco que profundicemos en ello observamos profundas dificultades y funcionamientos fuera de nuestra lógica; en la física de lo pequeño todo está cuantizado; todo contiene unas mínimas unidades por las que se manifiesta la materia, por lo que es una ilusión lo que observamos como una continuidad; la unidad mínima de la luz es el fotón, y de la carga electrica el electrón; pero tengo una duda: el supuesto gravitón como unidad de la gravedad, ¿También se supone cuantizado?, o es solo una onda?(Seguro que lo he leido varias veces pero no me acuerdo…)
Por cierto, ¿cuantos premios Nóbel hubiera merecido Max Planck, el descubridor de todas estas magnitudes?; únicamente le dieron uno por su teoría cuántica, pero pienso que podía haber obtenido unos pocos más, al igual que su amigo Einstein, ya que entre ambos formularon varias teorías que son hoy en día las bases de muchas leyes.
Actualmente en cambio podemos ver como dan esos premios a gente que apenas se lo merece, y por cuestiones que no están nada demostradas, como a mi entender podrían ser los casos premiados sobre el cambio climático.
el 5 de febrero del 2010 a las 14:02
Amigo Kike, llevas toda la razón en todo cuanto dices, y, en cuanto al gravitón, SÍ, aunque sea una partícula hipotética, debemos considerarla un cuanto de energía que se intercambia en una interacción gravitacional.
Dicha partícula, como bien sabes, no ha sido aún observada, pero se postula que es la responsable de las interacciones gravitacionales consistetentes con la mecánica cuántica. Se espera que viaje a la velocidad dee la luz y que tenga masa en reposo nula, carga nula y espín 2. Análogamente, hace la misma función en la fuerza gravitatoria que el fotón en el electromagnetismo.
el 5 de febrero del 2010 a las 20:12
Hola Emilio y Cía, aquí (física de partículas) estoy un poco/bastante pez aunque en el resto de cosas no pase de “ponny” de mar 🙂
Una pregunta sobre lo que acabas de comentar respecto el gravitón vs fotón. El fotón como cuanto de energía electromagnética sí que transporta energía electromagnética, pero cómo hace para ser responsable de la interacción entre dos cuerpos cargados eléctricamente?, es decir, ¿el fotón es responsable de la atracción y repulsión de las cargas eléctricas entre sí y de los polos magnéticos también?
A mi es que me cuesta ver cómo una partícula puede ser transmisora de fuerza, cómo el gravitón sale de un “sitio” llega a otro y obliga al destinatario a sentirse atraído…
No estoy pez, estoy placton
Ah! por cierto, habéis visto este vídeo? Experimento Doble Ranura:
http://www.youtube.com/watch?v=vfkdzNN2VLo