miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Física cuántica, los secretos del Cosmos…cosas que necesitamos...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1930, el físico Wolfgang Pauli propuso la hipótesis de una nueva e invisible partícula denominada neutrino para dar cuenta de la energía pérdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía. Pauli comprendió, no obstante, que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente, muy raramente con la materia.

Por ejemplo, si pudiéramos construir un bloque sólido de plomo de varios años-luz de extensión desde nuestro Sistema Solar hasta Alpha Centaury y lo pusiéramos en el camino de un haz de neutrinos, aun saldrían algunos por el extremo opuesto.  Pueden atravesar la Tierra como si ni siquiera existiese y, de hecho, billones de neutrinos emitidos por el Sol están atravesando continuamente nuestros cuerpos, tanto de día como de noche.  Pauli admitió: “He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada.”

Los neutrinos han sido objeto de grandes proyectos para su localización, y, escondidos en las profundidades de la Tierra, en minas abandonadas, han sido instalados grandes depósitos de agua pesada que, detectaban a los neutrinos que allí interaccionaban y que eran detectados por ordenador. Hay empresas que parecen descabelladas y, sin embargo, son las que nos traen los mayores éxitos.

Si repasamos la historia de la Ciencia, seguramente encontraremos muchos motivos para el optimismo.  Witten con su Teoría M,  está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck.

Como ya he contado en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.  En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.  Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas…  La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

En su opinión, las buenas ideas siempre se verifican.

Leer más

Cosas de la Mecánica cuántica y…otras

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica.  En estadística cuantica, los estados de energía se considera que están cuantizados.  La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

Los bosones tienen un momento angular n h / 2p, donde n es cero o un entero y h es la constante de Planck.  Para bosones idénticos, la función de ondas es siempre simétrica.  Si solo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

En un espacio de dos dimensiones es posible que existan partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones.  Estas partículas se conocen con el nombre de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1.  Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones).

La condensación de Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7k) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Este efecto (condensación Bose-Einstein), como ya habréis podido suponer, es llamado así en honor al físico Satyendra Naht Bose (1894-1974) y de Albert Einstein.

Leer más