miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




En cualquier estado que esté, seguirá siendo Materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellos. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio.  En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos, procedentes de la Naturaleza; otros, sólo del laboratorio.

Por ejemplo, el hidrógeno presenta tres variedades;

En primer lugar, el corriente, que tiene un solo protón.  En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía. Y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de “hidrógeno pesado”.

El núcleo de hidrógeno pesado está constituído por un protón y un neutrón.  Como tiene un número másico de 2, el isótopo es hidrógeno 2.  Urey llamó a este átomo “deuterio” (de la voz griega deútoros, “segundo”), y al núcleo “deuterón”.  Una molécula de agua que contenga deuterio se denomina “agua pesada” que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que, la masa del deuterio, es dos veces mayor que la del hidrógeno corriente.  Mientras que éste hierve a 100°C y se congela a 0°C, el agua pesada hierve a 101’42 °C y se congela a 3’79 °C.  El punto de ebullición del deuterio es de -23’7°K, frente a los 20’4°K del hidrógeno corriente.

El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente.  En 1934 se otorgó a Urey el premio Nóbel de Química por su descubrimiento del deuterio.

Leer más

Conociendo la Materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entre 1906 y 1908 (hace ahora un siglo) Rutherford realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos.  La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol).  Pero no todos.  En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado.  Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido.

Rutherford supuso que aquellas “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad, desviaban los proyectiles que acertaban a chocar contra él.  Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.

Era lógico suponer, pues, que los protones constituían ese núcleo duro.  Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo.)

En 1908 se concedió a Rutherfor el premio Nóbel de Química, por su extraordinaria labor de investigación sobre la naturaleza de la materia.  El fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

Leer más