Feb
21
En cualquier estado que esté, seguirá siendo Materia
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellos. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos, procedentes de la Naturaleza; otros, sólo del laboratorio.
Por ejemplo, el hidrógeno presenta tres variedades;
En primer lugar, el corriente, que tiene un solo protón. En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía. Y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de “hidrógeno pesado”.
El núcleo de hidrógeno pesado está constituído por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno 2. Urey llamó a este átomo “deuterio” (de la voz griega deútoros, “segundo”), y al núcleo “deuterón”. Una molécula de agua que contenga deuterio se denomina “agua pesada” que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que, la masa del deuterio, es dos veces mayor que la del hidrógeno corriente. Mientras que éste hierve a 100°C y se congela a 0°C, el agua pesada hierve a 101’42 °C y se congela a 3’79 °C. El punto de ebullición del deuterio es de -23’7°K, frente a los 20’4°K del hidrógeno corriente.
El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1934 se otorgó a Urey el premio Nóbel de Química por su descubrimiento del deuterio.
El deuterón resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P.Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituído por un protón y 2 neutrones. La reacción de planteó así:
Hidrógeno2+Hidrógeno2®Hidrógeno3+Hidrógeno1
Este nuevo Hidrógeno superpesazo se denomino “tritio” (del griego tritos “terceros”); su ebullición a 25’0 °K y su fusión, 20’5 °k.
Como es mi costumbre, me desvió del tema y sin poderlo evitar, mi ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo, un fugaz recuerdo, lo sigo y me lleva a destinos distintos de los que me propuse al comenzar, así, en este caso, me pasé a la química que, también me gusta mucho y está directamente relacionada con la física, de hecho son hermanas, la madre, las matemáticas, la única que, finalmente, lo podrá explicar todo.
Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra, o el Sol, o nuestra Galaxia o, si se me permite decirlo, como el propio Universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Estas, al girar, genera un minúsculo campo magnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nóbel de Física en 1943 y 1944, respectivamente, por sus trabajos sobre dicho fenómeno.
Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en número mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1926, por Fermín y Dirac. Por ello, se las llama y conoce como Estadísticas Fermi-Dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.
Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S.N.Bose. Las partículas que se adaptan a la “estadística Bose-Einstein” son “bosones”. Por ejemplo, la partícula alfa, es un bosón.
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica. En estadística cuantica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.
Los bosones tienen un momento angular n h / 2p, donde n es cero o un entero y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si solo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.
La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.
En un espacio de dos dimensiones es posible que hayce partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.
Debido al principio de exclusión de Pauli es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones).
La condensación de Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7k) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Este efecto (condensación Bose-Einstein), como ya habréis podido suponer, es llamado así en honor al físico Satyendra Naht Bose (1894-1974) y de Albert Einstein.
Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender como forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que ocurre así. La prueba directa más evidente de ello es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalentes a cero, aunque por alguna razón desconocida, lograr crear un campo magnético cuando gira la partícula.
Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E=mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es, ¡materia! La materia es la luz, la energía, el magnetismo. En definitiva, la fuerza que reine en el Universo y que esté presente, de una u otra forma en todas partes (aunque no podamos verla).
¡Es Curioso!
Sea como fuere, la rotación del neutrón nos de la respuesta a esas preguntas:
¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.
Es indudable que las antipartículas pueden combinarse para formar la “antimateria”, de la misma forma que las partículas corrientes forman la materia ordinaria.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un “antideuterón”. Desde entonces se ha producido el “antihielo 3”, y no cabe duda de que se pudiera crear otros antinúcleos más complicados aun si se abordara el problema con más interés.
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el Universo?
Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así, pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate dichas interacciones materia-antimateria.
emilio silvera