domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡¡DEBATE!! ¿Podrán existir las estrellas de Quarks?

Autor por Emilio Silvera    ~    Archivo Clasificado en Debates    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hoy, con los conocimientos que atesoramos y los sofisticados instrumentos con los que contamos y, con los avances que hemos podido conseguir en Física y Astrofísica, hemos llegado a un nivel muy aceptable del conocimiento de las estrellas y del proceso que siguen desde que nacen hasta que mueren, y, de entre toda la variedad de estos objetos estelares, los que más han llamado la atención por sus especiales caracterísiticas, han sido esas estrellas que, al final de sus vidas y dependiendo de sus masas, se pueden convertir en:

  • Enanas Blancas,
  • Estrellas de Neutrones, y
  • Agujeros Negros.

De todas ellas podemos (más o menos) explicar sus más destacadas caracteristicas y también el por qué, a partir de una estrella, se convierten en esos extraños objetos de tan altas densidades y, cada una de ellas (la estrella enana blanca, la de neutrones o el agujero negro, tienen sus especiales peculiaridades) pero, siguiendo la secuencia de estos tres ejemplos, la pregunta que se plantea en este debate es:

¿Podrán existir las Estrellas de Quarks?

emilio silvera


  1. El asombroso Universo: No sabemos todo lo que contiene : Blog de Emilio Silvera V., el 3 de febrero del 2013 a las 8:50

    […] extraños objetos de tan altas densidades y, cada una de ellas (la estrella enana blanca, la de neutrones o el agujero negro, tienen sus especiales peculiaridades) pero, siguiendo la secuencia de estos […]

 

  1. 1
    emilio silvera
    el 28 de febrero del 2010 a las 16:14

    El tema propuesto es complicado y, seguramente, pocos comentarios tendremos sobre él, sin embargo, para hacer ambiente, aquí dejo lo que sigue:

    La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “ neutronización “ ( recombinación de electrones con protones que resultan en neutrones ) y el gas degenerado de neutrones frena el colapso del remanente.

     

    Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromodinámica Cuántica ( CDC ), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones ( protones y neutrones ), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que fomarían una especie de “ sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.

     

    La “ sopa “ que mencionamos antes, se conoce como Plasma Quark-Gluón ( PQG ). En el límite de altas temperaturas, el PQG está tratando de obtenerse en el laboratorio y existen fuertes indicios de que se logre con éxito experimentos de altas energías como el Colisionador Relativista de Iones Pesados ( conocido por sus siglas en inglás como RHIC ) de Brookhaven, New York.

     

    Por otro lado, se espera que a través de observaciones astronómicas se compruebe que la transición a altas densidades se hubiese producido en el interior de alguna EN. Esto se debe a que los valores de densidades estimados para que dicha transición tuviese lugar coinciden con densidades del orden de ( 3 – 12 ) ρ0 ( siendo ρ0 ̃ 0, 17 fmˉ ³ la densidad de equilibrio nuclear ) que son típicas del interior de las ENs. Los cálculos basados en diferentes ecuaciones de estado de la materia nuclear muestran estos resultados, por lo que sería razonable que el núcleo de las ENs estuviese formado por materia de quarks.

     

    Recientemente, la relación entre campo magnéticos y materia densa está atrayendo la atención de los astrofísicos, especialmente después de las observaciones de emisiones peculiares de pulsares anómalos de rayos X, que se interpretan como ENs en rotación, y de emisiones de radiación γ de baja energía de los llamados repetidores de rayos γ suaves ( SGRs – soƒt gamma-ray repeaters ). El motor central de esas radiaciones podría ser un campo magnético mayor que 4 x 10¹³ Gauss, que es el campo crítico previsto por la Electrodinámica Cuántica.

     

    Muchas observaciones astronómicas indirectas sólo se explicarían a través de la existencia de campos magnéticos muy intensos en los núcleos de ENs  en EQs, de manera que el papel que juega el campo magnético en la ME aún constituye un problema abierto y de sumo interés en la Astrofísica.

     

    En particular, en un trabajo reciente, se ha analizado la ME considerando neutralidad de carga, equilibrio β y conservación del número bariónico. En dicho trabajo se obtuvo una cota superior para el valor del campo magnético que determina una transición de fase cuya explicación requiere ser estudiada en profundidad ya que sería independiente de la interacción fuerte entre los quarks. También se ha comprobado que la presencia de de campos magnéticos intensos favorece la estabilidad de la ME.

     

    Por otro lado, estudios teóricos han demostrado que si la materia es suficientemente densa, la materia de quarks deconfinada podría estar en un estado superconductor de color. Este estado estaría formado por pares de quarks, análogos a los pares de Cooper ( constituidos por electrones ) existentes en los superconductores ordinarios.

     

    Los quarks, a diferencia de los electrones, poseen grados de libertad asociados con el color, el sabor y el espín. Por este motivo, dependiendo del rango de densidades en el cual estamos trabajando, algunos patrones de apareamiento pueden verse favorecidos generando la aparición de distintas fases superconductoras de color. Según estudios teóricos, la fase superconductora más favorecida a densidades extremadamente altas sería la Color Flavor Locked ( CFL ), en la cual los quarks u, d y seç poseen igual momento de Fermi, y en el apareamiento participan los tres colores y las dos proyecciones de espín de cada uno de ellos. Estudios recientes sobre la fase CFL han incluido los efectos de campos magnéticos intensos, obteniendo que bajo determinadas condiciones el gap superconductor, que corresponde a la separación entre bandas de energía en el espectro fermiónico, crece con la intensidad del campo. A esta fase se la llama Magnetic Color Flavor Locked ( MCFL ).

     

    En la superconductividad electromagnética usual, un campo magnético suficientemente fuerte destruye el estado superconductor. Para la superconductividad de color no existe aún un consenso de cómo, la presencia del campo magnético, podría afectar al apareamiento entre los quarks.

     

    En este trabajo describiremos brevemente la materia extraña, con el objetivo de explicar su formación en el interior de una EN y entender la composición y características de una EQ. Posteriormente, utilizaremos el modelo fenomenológico de bag del Massachussets Institute of T echnology ( MIT ) para encontrar las ecuaciones de estado de la ME en condiciones determinadas, comprobando la estabilidad de la misma, frente a la materia de quarks ordinaria formada sólo por quarks u y d. Presentaremos, además, algunas candidatas posibles a EQs según observaciones astrofísicas. Por último, trataremos de entender la superconductividad de color y la influencia del campo magnético intenso en las fases superconductoras.

     

     

    Responder
  2. 2
    emilio silvera
    el 28 de febrero del 2010 a las 16:28

    Para entrar en materia diremos que en los últimos trabajos que sobre el tema se han realizado, se dice:

    Materia de Quarks:

     

    Uno de los mayores logros alcanzados por los físicos en el último siglo, fue la construcción del Modelo Estándar en la física de partículas elementales. Este modelo sostiene que la materia en el Universo está compuesta por fermiones, divididos en quarks y leptones, que interactúan a través de los llamados bosones de calibre: el fotón ( interacción electromagnética ), los bosones W± y Zº ( interacción débil ), y 8 tipos de gluones ( interacción fuerte ). Junto con los bosones de calibre, existen tres generaciones de fermiones: ( v e, e ), u, d ); ( vµ, µ ), ( c, s ) ; ( v….); y sus respectivas antipartículas. Cada “ sabor “ de los quarks, up ( u ), down ( d ), charm ( c ), strange ( s , top ( t ) y bottom ( b), tiene tres colores ( el color y el sabor son números cuánticos ). La partícula que aún no ha sido descubierta experimentalmente es el bosón de Higgs, que cabe suponer sería responsable del origen de la masa de las partículas.

     

    Los quarks son los componentes fundamentales tanto de los hadrones fermiónicos ( bariones formados por la combinación de tres quarks ) como de los bosónicos ( mesones formados por un quark y un antiquark ). ES sabido que el núcleo de un átomo está compuesto por nucleones ( protones y neutrones ) que a su vez están compuestos por quarks ( protón = udd ). David Gross y Franks Wilczek y David Politzer, descubrieron teóricamente que en la CDC el acoplamiento efectivo entre los quarks disminuye  a medida que la energía entre ellos aumenta ( libertad asintótica ). La elaboración de esta teoría permitió que recibieran el Premio Nobel de Física en el año 2004. En los años 60, la libertad asintótica fue comprobada expermentalmente en el acelerador lineal de Stanford ( SLAC ).

     

    Sin embargo, la CDC no describe completamente el deconfinamiento en un régimen de alta densidad y baja temperatura, debido a su complejidad matemática y a su naturaleza no lineal para bajas energías. No obstante, es posible recurrir a una descripción fenomenológica para intentar entender la física de la formación de la materia de quarks en las ENs. La materia de quarks, es decir, el plasma de quarks deconfinados y gluones, es una consecuencia directa de la libertad asintótica cuando la densidad bariónica o la temperatura son suficientemente altas como para considerar que los quarks son partículas más fundamentales que los neutrones o protones. Esta materia, entonces, dependiendo de la temperatura y del potencial químico (µ ) de los quarks, aparecería esencialmente en dos regímenes. Uno de ellos, el PQG, constituiría la fase “ caliente “ de la materia de quarks cuando T >> μ. El universo pasó seguramente por esta fase en los primeros segundos después del Big Bang, cuando la temperatura era extremadamente alta y la densidad bariónica muy baja. El PQC (Plasma de Quarks-Gluón) podría crearse en el laboratorio de manera artificial haciendo colisionar iones pesados.

     

    Está claro que, cualquier cosa que podamos pensar, posiblemente podrá suceder en el Universo y, desde luego, las estrellas de Quarks, aunque no se haya observado ninguna (aún), ¿quién puede negar su existencia.

     

     

     

    Responder
  3. 3
    Ramon Marquès
    el 28 de febrero del 2010 a las 19:01

    Hola amigo Emilio:
    Me permito incluir un chiste.
    El colmo en un restaurante: Llega un cliente y pide una sopa de quarks. Y el colmo del colmo es que el camarero se la sirve.
    Amigo Emilio, un abrazo. Ramon Marquès

    Responder
  4. 4
    Javier
    el 1 de marzo del 2010 a las 15:59

    Pero Emilio; fíjese que nos ha hecho pasar demasiado abruptamente de un debate sobre la posibilidad de vida extreterrestre en el que cualquiera puede tener (o puede creer tener) materia para dar opinión a uno en que la mayor parte no podremos siquiera atinar a decir cuac… cuac… cuac… quark!

    Responder
  5. 5
    Zephyros
    el 2 de marzo del 2010 a las 1:04

    cuac… cuac… cuac… quark!

    Genial  🙂

    lo suscribo

    Responder
  6. 6
    kike
    el 2 de marzo del 2010 a las 1:30

    Buenas noches a tod@s.

    Pues por decir algo, se me ocurre respecto a la pregunta, que si en los primeros momentos del B.B. los quarks no se encontraban aún confinados en los núcleos atómicos, y si además las primeras estrellas ya se pudieran haber formado en esos momentos, o al menos las protoestrellas, teniendo para ello en cuenta la teoría que dice que con la expansión primigenia se sembró el espacio de unas zonas más densamente pobladas de materia que otras, llamadas “semillas”, que fueron el origen de las estrellas y posteriormente de las galaxias,  entonces podría  ser posible que las primeras protoestrellas se comenzaran a formar a base de quarks, así como de cualquier otra partícula fundamental que se encontrara libre en esos momentos; al menos podría haber ocurrido que buena parte de los núcleos de esas estrellas pudieran estar compuestas de esos quarks.

    Ahora bien, en mi ignorancia del tema no atino a entender si ello es posible o la misma densidad de la protoestrella confinaria a los quarks convirtiéndolos en protones y neutrones, o bien en esos primeros momentos aún no se dieran las condiciones necesarias para que la materia se adensase tan tempranamente.

    Pero por pura intuición, o quizás porque pienso que casi todo es posible, creo que si en la actualidad se pueden encontrar estrellas de neutrones, no sería raro que hubieran existido con anterioridad estrellas capaces de comenzar a formarse solamente con partículas de quarks, ya que al fin y al cabo era prácticamente todo lo que existía.  En el fondo creo que la pregunta sería si las estrellas ya pudieron comenzar a formarse en los primeros momentos del B.B. debido a las indicadas “semillas”, o debieron esperar a que la materia se modificase lo suficiente.

    Responder
  7. 7
    Lancheros
    el 24 de marzo del 2011 a las 11:33

    Pues digo que si. a toda materia se le puede aplicar presion, (Los quarks son materia en niveles muy inferiores de los atomos), dedusco con solo mi 10 grado de estudio colombiano que si podrian existir pero en un estado de ajitacion de las particulas muy alto

    Responder
  8. 8
    emilio.silvera
    el 24 de marzo del 2011 a las 12:22

    Amigo Lancheros, el estado de agitación en que estarían los Quarks en esas densidades sería un estado intermedio entre las estrellas de neutrones y los agujeros negros. Un plasma de Quarks de una densidad extrema que hace que el estado de la materia sea exótico y de una rareza que, no podemos explicar. ¿Espuma cuántica? ¡Quién sabe!
    Es una lástima que no estemos más cerca en la completa y verdadera actividad de ciertas estrellas de gran masa. Si pudiéramos comprobar de manera más rigurosa (nuevos aparatos) lo que ocurre allí, en esas estrellas supermasivas al final de su ciclo de fusión, y, cuando quedan a merced de la intensa fuerza gravitatoria que, literalmente las estruja bajo el peso de sus propias masas, seguramente, nos llevaríamos algunas sorpresas.
    ¿Estrellas de Quaks? ¿Por qué no? sólo serían el punto intermedio entre las dos arriba mencionadas pero, parece que nada, ninguna ley física al menos,  puede impedir su existencia.
     

    Responder
    • 8.1
      Zephyros
      el 24 de marzo del 2011 a las 19:50

      Se me ocurre Emilio que hay algo que sí podría impedir su existencia, al menos su existencia estable. Es decir, es posible que una estrella de neutrones acabe colapsando convirtiéndose en un agujero negro si la masa es suficiente. Sí parece ser que las estrellas de neutrones son bastante estables durante un tiempo, luego se llegan a enfriar incluso. Los agujeros negros también parece ser serían estables aunque por una lado puedan crecer y por otro evaporarse lentamente, pero ahí parece que están (y digo bien, parece, puesto no los vemos sólo los detectamos por su influencia en los alrededores y en el espacio como lentes gravitatorias, no se si de alguna otra forma)
       
      El caso es que en el tránsito de formación de un AN es posible que no exista ese estado intermedio que supondría la estrella de Quarks más que por un periodo pequeño de tiempo, mientras dure el colapso en es etapa.
       
      Se me ocurre que una forma de detectar un objeto de este tipo, el cual no tengo ni idea del tipo de radiación que emite, puesto todavía no es AN entonces algo emitirá y debe ser detectable, decía que habría que buscar como candidatos a estrella de Quarks estrellas de neutrones discro de acreción que continuamente la esté alimentando. eso es relativamante fácil de detectar y nos encontraríamos con una estrella de neutrones que está siendo alimentada y por lo tanto su masa está en continuo crecimiento. Con un poco de suerte encontraríamos alguna que ya habría colapsado a estrella de Quarks y todavía no a AN.
       
      Me parece raro que si existen no se hayan detectado ya, debe ser una transición rápida, con lo cual será difícil, pero para estadística están los casos, y de estos hay multitud en el Universo: )
      Otra cosa, teniendo en cuenta que una estrella de Quarks se compone de Quarks… ¿cuál es la composición de un AN? espuma cuántica y tal qué implica? me parece que “pocas luces” tenemos para saber lo que pasa ahí dentro del AN.
      Saludos!

      Responder
  9. 9
    emilio silvera
    el 25 de marzo del 2011 a las 9:06

    Deduces bien, amigo Zephyros.
    “Hace ya tres décadas, T.D. Lee y G. Wick apuntaron la posibilidad de explorar una nueva Física distribuyendo una densidad de materia nuclear grande o una densidad de energía grande en un volumen relativamente grande. DE esta manera sería posible restaurar simetrías rotas del vacío físico y crear nuevos estados anormales de materia nuclear densa. Enseguida se vio que la libertad asintótica en Cromodinámica Cuántica, recientemente descubierta en aquel entonces, implicaba la existencia de una forma de materia nuclear muy densa formada por Quarks y Gluones deconfinados, que más tarde llamaron Plasma de Quarks y Gluones.”
    Se ha comprobado que estrellas enanas blancas que son los residuos mfinales de estrellas como el Sol, alcanzan una densidad considerable y, si tienen una estrella compañera cercana, comienzan a sustraerles materia hasta que, lo que era una enana blanca, se convierte en estrella de neutrones y su densidad aumenta considerablemente.
    De la misma manera ocurre con las estrellas de Neutrones que por medio del incremento de masa pasan a convertirse en Agujeros Negros, y, se ha pensado y todo apunta a que, posiblemente, exista una etapa intermedia para las estrellas de Quarks que, como dices, podría ser efímera y, lo cierto es que, hasta el momento, no se ha podido observar ningún objeto de este tipo, entre otras razones por lo que tú muy bien apuntas, no se sabe, a ciencia cierta, que radiación emitiría lo que se está buscando, es decir, las estrellas de Quarks.
    Esta “sopa de Quarks y Gluones” que se sitúa en el límite de las altas temperaturas, está tratando de obtenerse en el Laboratorio y existen fuertes indicios de que se logre con exito en experimentos de altas energías como el Colisionador Relativista de Iones Pesados RHIC de Brookhaven, New York. También en el CERN se han efectuado experimentos ISR y AGS explorando colisiones entre iones ligeros y, más tarde, el experimento del SPS también del CERN a una energía de √s  20 GeV por nucleón y de RHIC a 200 GeV por nucleón y, ahora con el LHC, se espera que trabaje en el rango de 5,5 TeV para continuar la búsqueda de esa materia de Quarks-Gluones.
    Está claro que todo es teórico y que nada se ha comprobado de forma experimental u observacional pero, todo apunta a que, podríamos estar hablando de algo cierto de cuya existencia ahora sólo sospechamos. Pero como bien apuntas, ni sabemos, en realidad, de que clase de materia se componen las singularidades de los agujeros negros, ya que, la materia a ese nivel de compresión, debe tomar caminos que desconocemos y ahí estamos buscando y teorizando sin cesar.
    De todas formas, tenemos que convenir en el hecho cierto de que, el Universo, nos guarda muchas sorpresas que sólo podremos ir atisbando a medida que nuestros conocimientos avancen. Todo está ahí, lo único que nos falta es tener la posibilidad intelectual y tecnológica para poder hallarlo.
    En cuanto a si existen o no las estrellas de Quarks, yo sólo puedo, como tú mismo haces, especular y con los pcoos conocimientos que tengo, hacerme una idea de cómo podrían formarse e incluso con qué estabilidad. Creo que de existir, la radiación que emiten es Gamma y hacia esa energía radiante debemos dirigir nuestros instrumentos para buscarlas.
    Un cordial saludo amigo.
    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

    ̃

    /* Style Definitions */
    table.MsoNormalTable
    {mso-style-name:”Tabla normal”;
    mso-tstyle-rowband-size:0;
    mso-tstyle-colband-size:0;
    mso-style-noshow:yes;
    mso-style-priority:99;
    mso-style-qformat:yes;
    mso-style-parent:””;
    mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
    mso-para-margin-top:0cm;
    mso-para-margin-right:0cm;
    mso-para-margin-bottom:10.0pt;
    mso-para-margin-left:0cm;
    line-height:115%;
    mso-pagination:widow-orphan;
    font-size:11.0pt;
    font-family:”Calibri”,”sans-serif”;
    mso-ascii-font-family:Calibri;
    mso-ascii-theme-font:minor-latin;
    mso-fareast-font-family:”Times New Roman”;
    mso-fareast-theme-font:minor-fareast;
    mso-hansi-font-family:Calibri;
    mso-hansi-theme-font:minor-latin;}

     
     
     
     

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting