domingo, 26 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Conociendo la Materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entre 1906 y 1908 (hace ahora un siglo) Rutherford realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos.  La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol).  Pero no todos.  En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado.  Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido.

Rutherford supuso que aquellas “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad, desviaban los proyectiles que acertaban a chocar contra él.  Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.

Era lógico suponer, pues, que los protones constituían ese núcleo duro.  Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo.)

En 1908 se concedió a Rutherfor el premio Nóbel de Química, por su extraordinaria labor de investigación sobre la naturaleza de la materia.  El fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

Leer más

Relativo a la Luz

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada. Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo verde, azul y violeta, en este orden. Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores. La amplia banda de sus componentes se denominó spectrum (palabra latina que significa espectro o fantasma). Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades. Le surgieron y se planteó algunas inquietantes cuestiones: ¿por qué se refractaban las partículas de luz verde más que las de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbarse mutuamente, es decir, sin que se produjeran colisiones entre partículas?

En 1678, el físico neerlandés Christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar las diversas difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire. La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción. Ello significaba que la luz violeta (la más sensible a este fenómeno) debía de tener una longitud de onda más corta que la luz azul; ésta, más corta que la verde, y así sucesivamente.

Lo que permitía al ojo distinguir los colores eran esas diferencias entre longitudes de onda. Y como es natural, si la luz estaba integrada por ondas, dos rayos podrían cruzarse sin dificultad alguna (las ondas sonoras y las del agua se cruzan continuamente sin perder sus respectivas identidades).

Leer más

Partículas II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Partículas

El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.

El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.

Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.

Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.

Leer más

¡Partículas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”.

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio. Leer más

A México, ese pueblo extraordinario

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entre los euroasiaticos del viejo mundo estuvieron los primeros grandes maestros de la técnica, pero los primeros pobladores del nuevo mundo fueron los más grandes exploradores, que atraverdaron el estrecho de Bering y emigraron rápidamente a tráves del hemisferio occidental. Cuando los europeos llegaron al Nuevo Mundo, los pueblos indígenas del hemisferio occidental no habían desarrollado aún las herramientas de hierro, salvo en los muy pocos casos en los que se utilizaba hierro de meteoritos.

Tampoco disponían de la rueda, ni de animales de montar o de tracción que puedieran utilizarce para tirar de un arado.  Sin embargo, hubo agriculturos que trabajaron con variedasdes de cultivos muy refinadas. El impacto que produjo el Nuevo Mundo en la agricultura del Viejo Mundo fue enorme. Los granjeros del Nuevo Mundo fueron quizá los mayores cosechadores de plantas del planeta.

Habian experimentado con las numerosas variedades de predecesores silvestres de sus plantas de cultivo y las habian explotado para su beneficio. Cuando llegaron a Europa, Asia, y África, estas variedades agricolas desencadenaron una revolución en la agricultura. El maiz y las patatas, por ejemplo, fueron considerados como “cultivo milagroso” después de su implantación en Europa.

Según la valoración de algunos expertos, los nativos americanos dieron al mundo los tres quintos de las plantas que actualmente se cultivan. En Mesoamerica el cacao, con el que se hace chocolate, era tan valioso que se usaba como moneda y sólo la élite podía beber chocolate caliente mezclado con miel. Los reyes mayas tenían sus propios chocolateros reales.

A principios del siglo XVI, en la época de la (nefastas) invasiones europeas, los únicos pueblos del Nuevo Mundo que disponían de tecnologías urbanas eran los de Mesoamerica y los Andes. Mesoamerica es una zona cultural que se extiende desde el norte y el centro de México hasta la orilla del Pacífico en Costa Rica, incluyendo el Sur de México, Guatemala, Belice y Honduras. Comenzó a adquirir su identidad cultural con la proliferación de poblados agrícolas alrededor del año 2.000 a.C. Los expertos están de acuerdo en que la mayoría, sino la totalidad, de las grandes culturas de Mesoamerica se generaron a partir de los olmecas del suroeste de México. Los olmecas que vivieron entre los años 1500 y 600 a.C., erigieron macizas esculturas y monumentos públicos de basalto (una roca volcánica oscura) que data de 1400 a.C.

Leer más