viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




No olvidar el pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hubo que descubrir la historia antes de explorarla. Los mensajes del pasado se transmitían primero a través de las habilidades de la memoria, luego de la escritura y, finalmente, de modo explosivo, en los libros.

El insospechado tesoro de reliquias que guardaba la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos y leyendas o un catálogo de lo familiar.

Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que nos traían otras formas de vida de pueblos ignotos y lejanos, abrieron perspectivas de progreso y novedad. La sociedad, la vida diaria del hombre en comunidad, se convirtió en un nuevo y cambiante escenarios de descubrimientos.

Aquí, como sería imposible hacer un recorrido por el ámbito de todos los descubrimientos de la Humanidad, me circunscribo al ámbito de la física, y, hago un recorrido breve por el mundo del átomo que es el tema de hoy, sin embargo, sin dejar de mirar al hecho cierto de que, TODA LA HUMANIDAD ES UNA, y, desde luego, teniendo muy presente que, todo lo que conocemos es finito y lo que no conocemos infinito. Es bueno tener presente que intelectualmente nos encontramos en medio de un océano ilimitado de lo inexplicable. La tarea de cada generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones del saber.

Como decía Einstein: “El eterno misterio del mundo es su comprensibilidad.”

Ahora, amigos, hablemos del átomo.

De lo Grande a lo Pequeño

El 6 de Agosto de 1945 el mundo recibió estupefacto desde Hiroshima la noticia de que el hombre había desembarcado en el oscuro continente del átomo. Sus misterios habrían de obsesionar al siglo XX. Sin embargo, el “átomo” había sido más de dos mil años una de las más antiguas preocupaciones de los filósofos naturales. La palabra griega átomo significa unidad mínima de materia, que se suponía era indestructible. Ahora el átomo era un término de uso corriente, una amenaza y una promesa sin precedentes.

El primer filósofo atómico fue un griego legendario, Leucipo, que se cree vivió en el siglo V a.C., y, a Demócrito, su discípulo, que dio al atomismo su forma clásica como filosofía: “la parte invisible e indivisible de la materia”, se divertía tanto con la locura de los hombres que era conocido como “el filósofo risueño” o “el filósofo que ríe”. No obstante fue uno de los primeros en oponerse a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó sobre una base de progreso. Si todo el Universo estaba compuesto solamente por átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre no tenía límite.

Lucrecio (c. 95 a.C. -c. 55 a.C.) perpetuó en De rerum natura uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón para temer a la muerte o a los poderes sobrenaturales.

Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, como era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecio y este fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecio fue, una de las figuras más influyentes del Renacimiento.

Así pues, en un principio el atomismo vino al mundo como sistema filosófico. Del mismo modo que la simetría pitagórica había proporcionado un marco a Copérnico, la geometría había seducido a Kepler y el círculo perfecto aristotélico hechizo a Harvey, así los “indestructibles” átomos de los filósofos atrajeron a los físicos y a los químicos. Francis Bacon observó que “la teoría de Demócrito referida a los átomos es, si no cierta, al menos aplicable con excelentes resultados al análisis de la Naturaleza”.

Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter. Otro filósofo francés, Pierre Gassendi (1592-1655), pareció confirmar la teoría de Demócrito y presentó otra versión más del atomismo, que Robert Boyle (1627-1691) adaptó a la química demostrando que los “elementos clásicos -tierra, aire, fuego y agua- no eran en absoluto elementales.

Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos para una nueva ciencia, la física atómica. Su atrevido concepto de “los puntos centrales” abandonaba la antigua idea de una variedad de átomos sólidos diferentes. Las partículas fundamentales de la materia, sugería Boscovich, eran todas idénticas, y las relaciones espaciales alrededor de esos puntos centrales constituían la materia… Boscovich que había llegado a estas conclusiones a partir de sus conocimientos de matemáticas y astronomía, anunció la íntima conexión entre la estructura del átomo y la del Universo, entre lo infinitesimal y lo infinito.

El camino experimental hacia el átomo fue trazado por John Dalton (1766-1844). Era este un científico aficionado cuáquero y autodidacta que recogió un sugestivo concepto de Lavoisier (1743-1794). Considerado una de los fundadores de la química moderna, Lavoisier, cuando definió un “elemento” como una sustancia que no puede ser descompuesta en otras sustancias por medio de ningún método conocido, hizo del átomo un útil concepto de laboratorio y trajo la teoría atómica a la realidad.

Dalton había nacido en el seno de una familia de tejedores de Cumberland, localidad inglesa situada en la región de los lagos, y estuvo marcada toda su vida por su origen humilde. A los doce años ya se encontraba a cargo de la escuela cuáquera de su pueblo. Después, comenzó a ejercer la enseñanza en la vecina Kendal, y en la biblioteca del colegio encontró ejemplares de los Principia de Newton, de las Obras de la Historia Natural de Buffón, así como un telescopio reflectante de unos setenta centímetros y un microscopio doble. Dalton recibió allí la influencia de John Gough, un notable filósofo natural ciego que, de acuerdo a lo que Dalton escribió a un amigo, “entiende muy bien todas las diferentes ramas de las matemáticas…Conoce por el tacto, el sabor y el olor de casi todas las plantas que crecen a casi treinta kilómetros a la redonda”. También Wordsworth elogia a Gough en su Excursión. Dalton recibió del filósofo ciego una educación básica en latín, griego y francés, y fue introducido en las matemáticas, la astronomía y todas las ciencias “de la observación”. Siguiendo el ejemplo de Gough, Dalton comenzó a llevar un registro meteorológico diario, que continuó hasta el día de su muerte.

Cuando los “disidentes” fundaron su colegio propio en Manchester, Dalton fue designado profesor de matemáticas y de filosofía natural. Halló una audiencia muy receptiva para sus experimentos en la Sociedad Literaria y Filosófica de Manchester, y presentó allí sus Hechos extraordinarios concernientes a la visión de los colores, que probablemente fue el primer trabajo sistemático sobre la imposibilidad de percibir los colores, o daltonismo, enfermedad que padecían tanto John Dalton como su hermano Jonathan. “He errado tantas veces el camino por aceptar los resultados de otros que he decidido escribir lo menos posible y solamente lo que pueda afirmar por mi propia experiencia”.

Dalton observó la aurora boreal, sugirió el probable origen de los vientos alisios, las causas de la formación de nubes y de la lluvia y, sin habérselo propuesto, introdujo mejoras en los pluviómetros, los barómetros, los termómetros y los higrómetros. Su interés por la atmósfera le proporcionó una visión de la química que lo condujo al átomo.

Newton había confiado en que los cuerpos visibles más pequeños siguieran las leyes cuantitativas que gobernaban los cuerpos celestes de mayor tamaño. La química sería una recapitulación de la Astronomía. Pero, ¿Cómo podía el hombre observar y medir los movimientos y la atracción mutua de estas partículas invisibles? En los Principios Newton había conjeturado que los fenómenos de la Naturaleza no descritos en este libro podrían “depender todos de ciertas fuerzas por las cuales las partículas de los cuerpos, debido a causas hasta ahora desconocidas, se impulsan mutuamente unas hacia otras y se unen formando figuras regulares, o bien se repelen y se apartan unas de otras.”

Dalton se lanzó a la búsqueda  de “estas partículas primitivas” tratando de encontrar algún medio experimental que le permitiera incluirlas en un sistema cuantitativo. Puesto que los gases eran la forma de materia más fluida, más móvil, Dalton centró su estudio en la atmósfera, la mezcla de gases que componen el aire, el cual constituyó el punto de partida de toda su reflexión sobre los átomos.

“¿Por qué el agua no admite un volumen similar de cada gas?, preguntó Dalton a sus colegas de la Sociedad Literaria y Filosófica de Manchester en 1803. “Estoy casi seguro de que la circunstancia depende del peso y el número de las partículas últimas de los diversos gases; aquellos cuyas partículas son más ligeras y simples se absorben con más dificultad, y los demás con mayor facilidad, según vayan aumentando en peso y en complejidad.”

Dalton había descubierto que, contrariamente a la idea dominante, el aire no era un vasto disolvente químico único sino una mezcla de gases, cada uno de los cuales conservaban su identidad y actuaba de manera independiente. El producto de sus experimentos fue recogido en la trascendental TABLE: Of the Relative Weights of Ultimate Particles of Gaseous and Other Bodies (“Tabla de los pesos relativos de las partículas últimas de los cuerpos gaseosos y de otros cuerpos”).

Tomando al Hidrógeno como número uno, Dalton detalló en esta obra veintiuna sustancias. Describió las invisibles “partículas últimas” como diminutas bolitas sólidas, similares a balas pero mucho más pequeñas, y propuso que se les aplicaran las leyes newtonianas de las fuerzas de atracción de la materia. Dalton se proponía lograr “una nueva perspectiva de los primeros principios de los elementos de los cuerpos y sus combinaciones”, que “sin duda…con el tiempo, producirá importantísimos cambios en el sistema de la química y la reducirá a una ciencia de gran simplicidad, inteligible hasta para los intelectos menos dotados”. Cuando Dalton mostró una “partícula de aire que descansa sobre cuatro partículas de agua como una ordenada pila de metralla” donde cada pequeño globo está en contacto con sus vecinos, proporcionó el modelo de esferas y radio de la química del siglo siguiente.

Dalton inventó unas “señales arbitrarias como signos elegidos para representar los diversos elementos químicos o partículas últimas”, organizadas en una tabla de pesos atómicos que utilizaba en sus populares conferencias. Naturalmente, Dalton no fue el primero en emplear una escritura abreviada para representar las sustancias químicas, pues los alquimistas también tenían su código. Pero él fue probablemente el primero que utilizó este tipo de simbolismo en un sistema cuantitativo de “partículas últimas”. Dalton tomó como unidad el átomo de Hidrógeno, y a partir de él calculó el peso de las moléculas como la suma de los pesos de los átomos que la componían, creando así una sintaxis moderna para la química. Las abreviaturas actuales que utilizan la primera letra del nombre latino (por ejemplo H2O) fueron ideadas por el químico sueco Berzelius (1779-1848).

La teoría del átomo de Dalton no fue recibida en un principio con entusiasmo. El gran sir Humphry Davy desestimó inmediatamente sus ideas tachándolas de “más ingeniosas que importantes”. Pero las nociones de Dalton, desarrolladas en A New System of Chemical Philosophy (1808), eran tan convincentes que en 1826 le fue concedida la medalla real. Como Dalton no olvidó nunca su origen plebeyo, permaneció siempre apartado de la Royal Society de Londres, pero fue elegido miembro, sin su consentimiento, en 1822. Receloso del tono aristocrático y poco profesional de la Sociedad, él se encontraba más a gusto en Manchester, donde realizó la mayor parte de su obra, colaboró con Charles Babage y contribuyó a fundar la Asociación Británica para el Progreso de la Ciencia, cuyo objetivo era llevar la ciencia hasta el pueblo. Los newtonianos partidarios de la ortodoxia religiosa no creían que Dios hubiera hecho necesariamente sus invisibles “partículas últimas” invariables e indestructibles. Compartían con Isaac Newton la sospecha de que Dios había utilizado su poder “para variar las leyes de la Naturaleza y crear mundos diversos en distintos lugares del Universo”.

El átomo indestructible de Dalton se convirtió en el fundamento de una naciente ciencia de la química, proporcionando los principios elementales, las leyes de composición constante y de proporciones múltiples y la combinación de elementos químicos en razón de su peso atómico. “El análisis y la síntesis química no van más allá de la separación de unas partículas de otras y su reunión”, insistió Dalton. “La creación o la destrucción de la materia no está al alcance de ningún agente químico. Sería lo mismo tratar de introducir un planeta nuevo en el Sistema Solar o aniquilar uno de los ya existentes que crear o destruir una partícula de Hidrógeno.” Dalton continuó usando las leyes de los cuerpos celestes visibles como indicios del Universo infinitesimal. El profético sir Humphry Davy, sin embargo, no se convencía, “no hay razón para suponer que ha sido descubierto un principio real indestructible”, afirmó escéptico.

Dalton no era más que un Colón. Los Vespucios aún no habían llegado, y cuando lo hicieron trajeron consigo algunas sorpresas muy agradables y conmociones aterradoras. Entretanto, y durante medio siglo, el sólido e indestructible átomo de Dalton fue muy útil para los químicos, y dio lugar a prácticas elaboraciones. Un científico francés, Gay-Lussac, demostró que cuando los átomos se combinaban no lo hacían necesariamente de dos en dos, como había indicado Dalton, sino que podían agruparse en asociaciones distintas de unidades enteras. Un químico italiano, Avogadro (1776-1856), demostró que volúmenes iguales de gases a la misma temperatura y presión contenían el mismo número de moléculas. Un químico ruso, Mendeleiev, propuso una sugestiva “Ley periódica” de los elementos. Si los elementos estaban dispuestos en orden según su creciente peso atómico entonces grupos de elementos de características similares se repetirían periódicamente.

La disolución del indestructible átomo sólido provendría de dos fuentes, una conocida y la otra bastante nueva: el estudio de la luz y el descubrimiento de la electricidad. El propio Einstein describió este histórico movimiento como la decadencia de una perspectiva “mecánica” y el nacimiento de una perspectiva “de campo” del mundo físico, que le ayudó a encontrar su propio camino hacia la relatividad, hacia explicaciones y misterios nuevos.

Albert Einstein tenía en la pared de su estudio un retrato de Michael Faraday (1791-1867), y ningún otro hubiera podido ser más apropiado, pues Faraday fue el pionero y el profeta de la gran revisión que hizo posible la obra de Einstein. El mundo ya no sería un escenario newtoniano de “fuerzas a distancias”, objetos mutuamente atraídos por la fuerza de la Gravedad inversamente proporcional al cuadrado de la distancia que hay entre ellos. El mundo material se convertiría en una tentadora escena de sutiles y omnipresentes “campos de fuerzas”. Esta idea era tan radical como la revolución newtoniana, e incluso más difícil de comprender para los legos en la materia.

Tal como la revolución copernicana en la astronomía, la revolución “del campo”  en la física sería un desafío al sentido común y conduciría una vez más a los científicos pioneros a “las brumas de la paradoja”.Si Michael Faraday hubiese tenido una sólida formación matemática quizá no hubiera estado tan dispuesto a realizar su sorprendente revisión. Hijo de un herrero pobre de las afueras de Londres, Faraday tuvo que ganarse la vida desde muy niño, y se dice que en tiempos de guerra, cuando los precios eran muy altos, pasaba una semana entera con una barra de pan. Sus padres pertenecían a una reducida secta protestante escocesa fundamentalista y practicante del ascetismo que, como los cuáqueros, creía en un clero laico y se oponía a la acumulación de bienes materiales. Faraday asistía regularmente a las reuniones dominicales y fue uno de los dirigentes de la congregación hasta el final de su vida. Los pasajes más marcados de su muy leída Biblia se hallaban en el libro de Job. Faraday prácticamente no tuvo una educación formal-“poco más que los rudimentos de lectura, escritura y aritmética que se enseñan en una escuela corriente”- pero a los trece años entró afortunadamente a trabajar en el taller de un amistoso impresor y encuadernador francés emigrado, un tal monsieur Riebau. Al principio Faraday repartía los periódicos que Riebau prestaba, y los recogía posteriormente para llevarlos a otros clientes.

Entre los libros que llegaron al taller de Riebau para ser encuadernados estaba The improvement of the Mind ( “La perfección de la mente”), del escritor de himnos Isaac Watts, cuyo sistema para el perfeccionamiento de sí mismo siguió Faraday. Llevando un diario que luego se convertiría en su famoso cuaderno de laboratorio. Un día Faraday recibió en el taller para su encuadernación un tomo de la Enciclopedia Britannica ( 3.ª ed., 1797) que contenía un artículo de 127 páginas a doble columna sobre la electricidad de un fluido y de dos fluidos, y proponía que la electricidad no era un flujo material sino un tipo de vibración, semejante a la luz y el calor. Esta atractiva sugerencia marcó el comienzo de la carrera científica de Faraday.

En 1810 Faraday comenzó a asistir a las conferencias públicas de la Sociedad Filosófica de la Ciudad, y luego a las que daba Humphry Davy en la institución Real. En diciembre de 1811 Faraday causó una favorable impresión en Davy cuando le envió las notas, escritas con una hermosa letra y cuidadosamente encuadernadas, que había tomado en las conferencias del primero, acompañadas de una solicitud para que le contratara como auxiliar. Davy había quedado temporalmente ciego en octubre de ese mismo año a causa de una explosión que había acontecido en su laboratorio y necesitaba un amanuense. Contrató a Faraday por una guinea a la semana y el uso de doa habitaciones en el último piso de la institución, con combustible, velas y batas de laboratorio incluidos, además de la libertad para utilizar los aparatos. A los veinte años, Faraday se hallaba en el laboratorio de uno de los mayores químicos de la época, y podía experimentar allí a sus anchas. ¡ Un sueño hecho realidad !.Sir  Humphry y lady Davy completaron la educación de Faraday llevándolo con ellos en una gira por el continente europeo en 1813-1814. Visitaron Francia e Italia, conocieron a científicos y Faraday compartió las esperanzas y las dudas del parlanchín Davy. Cuando regresaron a Inglaterra en abril de 1815, Davy había inmunizado a Faraday contra las generalizaciones fáciles y había renovado su pasión por el experimento. De regreso en el laboratorio, Faraday experimentó con combustibles para calefacción y alumbrado, y finalmente descubrió el benceno. Elaboró los primeros compuestos de cloro y carbono, de los que salió el etileno, resultado de la primera reacción de sustitución conocida. Faraday también fue un pionero de la química de las aleaciones de acero. Con el tiempo se sabría que uno de los hechos cruciales de su vida fue el encargo, por parte de la Royal Society, que lo llevó a elaborar un nuevo cristal óptico ” grueso” con un alto índice de refracción especialmente útil para los experimentos con luz polarizada.

El temperamento optimista de Faraday se vio reforzado por un feliz matrimonio con la hermana de un individuo que había conocido en la Sociedad Filosófica de la Ciudad. Sarah Bernard nunca compartió los intereses científicos que hacían pasar a Faraday las noches en vela, pero decía que se sentía feliz de ser la “almohada de su mente”.

En ese mundo nuevo en que la prioridad era recompensada, los tempranos éxitos de Faraday despertaron la envidia de su famoso mentor. En 1824, cuando Faraday fue propuesto para ingresar en la Royal Society por haber logrado la licuefacción del cloro, Davy se opuso a su candidatura y afirmó que el mérito era suyo. A pesar de todo, Faraday fue elegido.

Davy se había sentido intrigado por los recientes esfuerzos teóricos para adaptar las ideas de Newton a las necesidades que experimentaba el químico en el laboratorio. El más atractivo de estos esfuerzos era la teoría del “punto central” de Boscovich, que describía el átomo no como una diminuta bola de billar de materia impenetrable, sino como un centro de fuerzas. Si las “partículas últimas” de materia tenían esta característica, se explicaría así la interacción de los elementos químicos, sus “afinidades” y los modos de formar compuestos estables.

Boscovich había limitado su atrevida sugerencia a los elementos químicos. Faraday, cuando por casualidad enfocó su pasión por el experimento sobre el poco explorado reino de la electricidad, sintió un renovado interés por la teoría de Boscovich. En 1821 un amigo solicitó a Faraday que escribiera un artículo extenso para el Philosophical Magazine explicando el electromagnetismo al público lego en la materia. En aquel momento había un gran interés por el tema, desde que el verano anterior el físico danés Hans Christian Oersted (1777-1851) había probado, durante una demostración realizada en una conferencia nocturna, que un alambre que condujera corriente eléctrica podía desviar una aguja magnética.

Siguiendo las ideas sugeridas por Oersted, Faraday inventó un sencillo aparato formado por dos cubetas que contenían mercurio, un alambre conductor de corriente y dos barras imantadas cilíndricas. Con esto él demostraba elegantemente la rotación electromagnética, probando que el alambre conductor rotaba alrededor del polo de un imán, y el polo de un imán hacía lo mismo en torno a un alambre conductor.

Quizá Faraday empezaba a sospechar que alrededor de un alambre conductor había líneas circulares de fuerza, y que tal vez las fuerzas del magnetismo y de la electricidad fueran convertibles. En este punto fue una suerte que Faraday no fuese un matemático refinado, pues si lo hubiese sido probablemente habría seguido el camino convencional, como el que tomó el prestigioso matemático francés André Marie Ampère (1775-1836), y hubiese tratado de explicar el electromagnetismo simplemente mediante una formulación matemática de los centros de fuerza newtonianos. Pero la ingenua mirada de Faraday percibió otra cosa.

Sin proponérselo,  Faraday ya había realizado la primera conversión de energía mecánica en energía electrica.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting