lunes, 27 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La complejidad del LHC

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

EL LHC: El Sistema de vacío más grande del mundo.

Cuando el 10 de septiembre de 2008, se puso en servicio en el CERN, el Gran Colisionador de Hadrones, el LHC, un acelerador de partículas gigante salido de la imaginación de los físicos de partículas de altas energías, se inicio el mas ambicioso experimento en el campo de la Física de Partículas de Alta Energía. Se espera que conduzca al descubrimiento del pronosticado Boson de Higgs o podría desvelar nuevas físicas más allá del Modelo Estándar.

Con sus 26,7 Km de longitud, el LHC tiene el sistema de vació mas grande del mundo operando en una extensa gama de presiones y utilizando una impresionante variedad de tecnologías de vació, algunas de las cuales fueron puestas a punto en el CERN. Este sistema es fundamental para los aceleradores ya que, evidentemente, sin vació, las partículas no podrían sobrevivir ni los detectores funcionar.

Instalado en el túnel subterráneo (entre -80 y -140 m) del antiguo LEP (gran colisionador de electrones y positrones) y a caballo sobre la frontera franco-suiza a menos de 15 kilómetros de la ciudad de Ginebra, el LHC esta compuesto por un doble anillo de almacenamiento de partículas. Cada anillo transporta un haz de hadrones de 7 TeV de energía que circulan en direcciones opuestas, colisionando en cuatro gigantescos experimentos. Los dos haces de hadrones están dirigidos y enfocados por centenares de imanes superconductores, enfriados a una temperatura de 1.9 K (-271.25ºC) utilizando helio superfluito. Un vació de aislamiento permite reducir los intercambios térmicos entre imanes criogénicos y el criostato a la temperatura ambiente.

Comparado con un acelerador lineal, un colisionador de partículas como el LHC tiene exigencias para el vació del haz de partículas mas importantes. En el LHC, las partículas del haz viajan a una velocidad muy próxima a la velocidad de la luz (300.000 Km/s) y completan ¡más de 11.000 revoluciones del anillo por segundo! Por diseño, cada ciclo (inyección, colisiones entre haces, extracción de los haces) de Física durara 10 horas durante las cuales el vació residual tendrá que tener un impacto de incidencia mínima sobre los haces. Tal requisito requiere una vida de las partículas que tienen que exceder de 100 horas, lo que implica que las partículas viajen durante 4 billones de de revoluciones del LHC, equivalentes ¡a 280.000 viajes a la Luna! (384000 Km) sin colisionar con los átomos o moléculas del vació residual.

Leer más

¡Escuchad mis pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Medir la energía de rayos cósmicos, que son partículas subatómicas altamente energéticas cuyo origen es aún desconocido, pero que debe estar en las profundidades del espacio exterior más allá de nuestra galaxia. Por ejemplo, aunque nadie sabe de dónde vienen, los rayos cósmicos tienen energías mucho mayores que cualquier cosa encontrada en nuestros laboratorios de pruebas.

Los rayos cósmicos son impredecibles en cuanto a su energía aleatoria. Hace ya aproximadamente un siglo que fueron descubiertos por un padre jesuita de nombre Theodor Wolf en lo alto de la Torre Eiffel en París. Desde entonces, el conocimiento adquirido de estos rayos es bastante aceptable; se buscan y miden mediante el envio de contadores de radiación en cohetes e incluso en satélites a gran altura alrededor del planeta Tierra para minimizar agentes interceptores como los efectos atmosféricos que contaminan las señales. Cuando los rayos energéticos, altamente energéticos, inciden en la atmósfera, rompen los átomos que encuentran a su paso y los fragmentos que se forman caen a tierra donde son detectados por aparatos colocados al efecto en la superficie.

El detector de Utah, a unos 140 Km al suroeste de Salt Lake City, es lo suficientemente sensible como para detectar la procedencia, el origen de los rayos cósmicos más energéticos. Hasta el momento, Cygnus X-3 y Hércules X-1 han sido identificados como poderosos emisores de rayos cósmicos.  Probablemente son grandes estrellas de neutrones, o incluso agujeros negros en rotación engullendo a sus estrellas vecinas que, inocentes, han osado traspasar el horizonte de sucesos. Cuando el material de la estrella traspasa ese punto de no regreso, crea un gran vórtice de energía y escupe cantidades gigantescas de radiación (por ejemplo, protones) al espacio exterior.

Leer más

Un comentario breve de Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Magnetismo

Grupo de fenómenos asociados a los campos magnéticos. Siempre que una corriente eléctrica fluye, se produce un campo magnético; como el movimiento orbital de un electrón y el espín de los electrones atómicos son equivalentes a pequeños circuitos de corriente, los átomos individuales crean campos magnéticos a su alrededor cuando los electrones orbitales tienen un momento magnético neto como resultado de su momento angular. El momento angular de un átomo es el vector suma de los momentos magnéticos de los movimientos orbitales y de los espines de todos los electrones en el átomo.

Las propiedades magnéticas macroscópicas de una sustancia tienen su origen en los momentos magnéticos de sus átomos o moléculas constituyentes. Diferentes materiales poseen distintas características en un campo magnético aplicado; hay cuatro tipos de comportamientos magnéticos.

a)                 En diamagnetismo, la magnetización está en la dirección opuesta a la del campo aplicado, es decir, la susceptibilidad es negativa. Aunque todas las sustancias son diamagnéticas, es una forma débil de magnetismo que puede ser enmascarada por otras formas más fuertes. Tiene su origen en los cambios introducidos por los campos aplicados en las órbitas de los electrones de una sustancia, siendo la dirección del cambio opuesta a la del flujo aplicado (de acuerdo con ley de Lenz).

Existe, por tanto, una débil susceptibilidad negativa (del orden de -10-8 m3 mol-1) y una permeabilidad relativa ligeramente menor que 1.

Leer más

AIA-IYA 2009. Año Internacional de la Astronomía

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me hace gracia ver y escuchar como “doctos” licenciados dicen que ellos conocen lo que es el Universo, por ejemplo, o lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este mo0delo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones.

No siempre este modelo científico es una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo,  se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.

Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.

Leer más