viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los aceleradores de partículas para conocer la Materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los aceleradores de partículas son un gran invento que ha permitido comprobar (hasta donde se ha podido, al menos), la estructura del átomo.   En el acelerador del Fermilab, por ejemplo, un detector de tres pisos de altura que ha costado unos ochenta millones de dólares capta electrónicamente los “restos” de la colisión entre un protón y un antiprotón.  Aquí la “prueba”, el “ver”, consiste en que decenas de miles de sensores generen un impulso eléctrico cuando pasa una partícula.

Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables.  Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos.  La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido.  Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.

Yo puedo visualizar la estructura interna de un átomo.  Puedo hacer que me vengan imágenes mentales de nebulosas de “presencia” de electrón alrededor de la minúscula mota del núcleo que atrae esa bruma de la nube electrónica hacia sí.  Puedo ver los átomos, los protones y neutrones y, en su interior, los diminutos quarks enfangados en un mar de gluones.

Claro que, todo eso es posible, por el hecho de que, dicha imagen, me es muy familiar.  Creo que cada uno construirá sus propias imágenes conforme él las vea a partir de las ecuaciones o bien de cómo las formó en su mente a partir de sus lecturas o explicaciones oídas en charlas científicas.

Cuando entraron en escena David Politrer, de harvard, y Davil Gross y Frank Wilcrek, de Princeton, el panorama de lo que ocurría en el interior del núcleo, se aclaró bastante.  Ellos, descubrieron algo que llamaron libertad asintótica. Asintótico significa, burdamente, “que se acerca cada vez más, pero no toca nunca”.  Los quarks, según descubrieron los tres, tienen libertad asintótica.   La interacción fuerte se debilita más y más a medida que un quark se aproxima a otro.  Esto significa paradójicamente, que cuando los quarks están muy juntos se portan casi como si fuesen libres.  Pero cuando se apartan, las fuerzas se hacen efectivamente mayores.  Las distancias cortas suponen energías altas, así que la interacción fuerte se debilita a altas energías.

Esto es justo lo contrario de lo que pasa con la fuerza eléctrica.

Aún más importante era que la interacción fuerte necesitase una partícula mensajera, como las otras fuerzas y, en alguna parte le dieron al mensajero el nombre de gluón (de las ingles Blue, pegamento).

A todo esto, llegó Murray Gell-Mann con sus quarks para completar el panorama, adjudicó a estas diminutas partículas color y sabor (nada que ver con el gusto y los colores reales) y llegó la teoría denominada cromodinámica cuántica.  Todo aquello dio mucho que hablar y mucho trabajo a los teóricos y experimentadores y, al entrar en los años ochenta, se había dado ya con todas las partículas de la materia (los quarks y los leptones), y teníamos las partículas mensajeras, o bosones gauge, de las tres fuerzas, a excepción de la Gravedad.

La familia de los leptones está compuesta por el electrón, muón y tau con sus correspondientes neutrinos.

Así quedó prácticamente completo el llamado modelo estándar que describe las partículas que forman la materia conocida y las fuerzas que intervienen e interaccionan con ellas.  La gravedad, quedó plasmada en la relatividad general de Einstein.

¿Por qué es incompleto el modelo estándar? Una carencia es que no se haya visto todavía el quark top.  Otra la ausencia de una de las cuatro fuerzas fundamentales, la Gravedad.  Otro defecto estético es que no es lo bastante simple; debería parecerse más a la tierra, aire, fuego y agua, de Empédocles.  Hay demasiados parámetros y demasiados controles que ajustar.

Necesitamos una nueva teoría que sea menos complicada, más sencilla y bella, sin vericuetos intrincados que salvar, con la limpieza y serena majestad de la teoría de la Gravedad que, con enorme simpleza y aplicando principios naturales, trata los temas más profundos del Universo.

Esperemos que continué desarrollándose la teoría de cuerdas y que, como parece, incluya todas las fuerzas, toas las partículas y, en fin, todos los parámetros que dan sentido al Universo.

A todo esto y como he dicho, el quark top está perdido y el neutrino tau, no se ha detectado directamente, y muchos de los números que nos hacen falta conocer los tenemos de forma imprecisa.  Por ejemplo, no sabemos si los neutrinos tienen alguna masa en reposo.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar.  La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes.  Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intento calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que mencioné en páginas anteriores.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.

¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pietez Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa –los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que t´ Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

Ya veremos en que nos queda todo esto finalmente, y, la respuesta está muy cerca, ya que, cuando el LHC realice el trabajo para el que fue construído, nos tendrá que dar algunas razones de por qué todo esto funciona de la manera que lo hace. Y, de ser positivos los resultados, como se espera, sabremos un poco más sobre la enigmática materia que tan compleja es.

emilio silvera

 

  1. 1
    Ramon Marquès
    el 30 de agosto del 2009 a las 20:16

    Hola amigo Emilio:
    En primer lugar gracias porque tú nos recuerdas las cosas y nos haces pensar. Porque yo creo que previo a los aceleradores conviene pensar, pensar y pensar. Pensar porqué se nueven las partículas o porqué la masa tiene energía, porqué de la gravedad…las cosas no suceden porque sí y en el fondo son más complejas de lo que pudiera paracer a primera vista. Entonces a mi me sale que procede un giro copernicano por el que un espacio vibratorio en expansión es la causa del movimiento y de la energía de las partículas, y me sale que la gravedad y la masa son la consecuencia del efecto frenado, es decir, la interacción del espacio vibratorio en expansión con el efecto rotatorio de la partícula (sin el efecto frenado la partícula debería ir a la velocidad de la luz).
    Un abrazo. Ramon Marqués

    Responder
  2. 2
    medardo
    el 18 de noviembre del 2009 a las 1:56

    un monton de palabras divertidas gracias por compartirlas. el origen de la materia es sencillo. No existe el vacio tan solo debemos identificar la masa comprimida entre los muones ya que es esta la causante de la debil atraccion a mayor cercania. esto seria la respuesta refente a nuestro universo por que conociendo lo fisico aun no definiremos el origen de la existencia por favor sigue en tu goce por que se nota que lo disfrutas

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting