Jun
17
S = k log W
por Emilio Silvera ~ Clasificado en Física ~ Comments (6)
Simples pensamientos recordando
De vez en cuando, como pequeño homenaje, he dejado aquí la referencia de algún personaje de la Física que, con su trabajo e ingenio, le dio a la Humanidad la herramienta para que pudiera seguir avanzando en el difícil laberinto de la Cienca, y, no hace mucho que se cumplió el centenario de la muerte de Ludwig Boltzmann (Viena, 1844 – Duino, cerca de Trieste, 1.906), que es sin duda uno de los físicos más ilustres del siglo XIX.
El trabajo científico desarrollado por Boltzmann en su época crítica de transición que puso el colofón a la física “clásica” – cuya culminación podríamos situar en Maxwell – y antecedió (en pocos años) a la “nueva” física, que podemos decir que comenzó con Max Planck y Einstein. Aunque ciertamente no de la importancia de los dos últimos, la labor científica de Boltzmann tiene una gran relevancia, tanto por sus aportaciones directas (creador junto con “su amigo” Maxwell y Gibbs de la mecánica estadística, aunque sea el formulismo de éste último el que finalmente haya prevalecido; esclarecedor del significado de la entropía, etc.) como por la considerable influencia que tuvo en ilustres físicos posteriores a los que sus trabajos dieron la inspiración, como es el caso de los dos mencionados, Planck y Einstein.
Boltzmann fue un defensor a ultranza del atomismo, polemizando sobre todo con Mach y Ostwald, antiatomistas partidarios de la energética y claros exponentes de la corriente idealista de la física alemana. Tuvo que abandonar su ambiciosa idea de explicar exactamente la irreversibilidad en términos estrictamente mecánicos; pero esta “derrota”, no ocultaré que dolorosa desde el punto de vista personal, le fue finalmente muy productiva, pues de alguna manera fue lo que le llevó al concepto probabilista de la entropía. Estas primeras ideas de Boltzmann fueron reivindicadas y extendidas, en el contexto de la teoría de los sistemas dinámicos inestables, sobre todo por la escuela de Prigogine, a partir de la década de 1970.
Jun
17
Otros mundos y la vida en el Universo
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
La NASA y la ESA están trabajando en una nueva generación de proyectos que podrían usar esa tecnología de nuevo cuño. Sin embargo, lo más seguro es que, finalmente, dado el alto coste de estas misiones, se fusionen en un Proyecto verdaderamente global.
Sería una colaboración entre todos los expertos de renombre que hay en la Tierra para buscar la prueba de que no estamos solos en el Universo –Gaia en su conjunto buscando otras Gaias- El Proyecto de la Agencia Espacial Europea se conoce como el proyecto Darwin, pero también se denomina de una manera más prosaica, Interferómetro Espacial de Infrarrojos (IRSI = Infrared Space Interferometer); equivalente al de la NASA denominado Terrestrial Planet Zinder (TPF). Los dos proyectos funcionarán según los mismos principios.
Sin embargo, por sorprendente que pueda parecer, especialmente después de ver las imágenes de la Tierra tomadas desde el espacio, en las cuales ésta aparece como una brillante bola azul y blanca sobre un fondo oscuro, la luz visible no ofrece las mejores perspectivas para detectar directamente otros planetas similares a la Tierra. Esto es así por dos razones:
En primer lugar, la luz visible que se recibe desde un planeta como la Tierra es en esencia el reflejo de la luz procedente de su estrella progenitora, por lo que no sólo es relativamente débil, sino que resulta muy difícil de captar a distancias astronómicas sobre el fondo iluminado por el resplandor de dicha estrella.
En segundo lugar, del tipo de la Tierra alcanzan en realidad su brillo máximo en la parte de rayos infrarrojos del espectro electromagnético, por el modo en que la energía absorbida procedente del Sol vuelve a irradiarse en la zona de infrarrojos de dicho espectro, con longitudes de onda más largas que las de la luz visible.
Jun
17
Inmersos en el espaciotiempo
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Para el cosmólogo, la única certeza es que el Universo morirá un día. Algunos creen que la muerte final del Universo llegará en la forma del big crunch. La gravitación invertirá la expansión cósmica generada por el big bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos.
Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más dá! No habrá escape.
Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo. Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.
Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final.
Él especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch. En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje interdimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.
Jun
17
Los aceleradores de partículas para conocer la Materia
por Emilio Silvera ~ Clasificado en Física ~ Comments (2)
Los aceleradores de partículas son un gran invento que ha permitido comprobar (hasta donde se ha podido, al menos), la estructura del átomo. En el acelerador del Fermilab, por ejemplo, un detector de tres pisos de altura que ha costado unos ochenta millones de dólares capta electrónicamente los “restos” de la colisión entre un protón y un antiprotón. Aquí la “prueba”, el “ver”, consiste en que decenas de miles de sensores generen un impulso eléctrico cuando pasa una partícula.
Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.
La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido. Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.
Jun
16
El Límite de Planck o el cuanto de Tiempo
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
Tiempo de Planck
Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por Tp= ( G ħ / C3 ), donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada ( ħ = h / 2 л = 1,054589 x 10-34 Julios segundo ), c, es la velocidad de la luz (299.792.458 m/s).
El valor del tiempo del Planck es del orden de 10-43 segundo. En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo.
Expresado en números corrientes que todos podamos entender, el Tiempo de Planck vale 0’000.000.000.000.000.000.000.000.000.000.000.000.000.0010 de 1 segundo que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10–35 metros (veinte ordenes de magnitud menor que el tamaño del protón de 10–15 metros). El límite de Planck es Lp= √ ( G ħ / C3 ).
Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.