jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




FÍSICA

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Habitualmente aceptamos que la física es la ciencia que estudia la estructura y propiedades de la materia y la energía, las formas de existencia de las mismas en el espacio y el tiempo, así como las leyes de rigen sus interacciones. En este definición no hay limitaciones precisas entre la naturaleza viviente e inanimada, y aunque ello no implica la reducción de todas las ciencias a la física, se deduce que las bases teóricas finales de cualquier dominio de las ciencias naturales tienen una naturaleza física. También se acepta que la biología es la ciencia que trata sobre la naturaleza viviente, incluyendo los aspectos morfológicos, fisiológicos y moleculares. Al ser ésta mucho más compleja que la inerte, la metodología utilizada para establecer los fundamentos de los fenómenos biológicos y sus leyes es, en general, bastante diferente a la utilizada para el estudio de los fenómenos físicos. Podríamos decir que la física biológica, o biofísica, es la física de los procesos biológicos estudiados a todos los niveles, comenzando por las moléculas y las células y terminando por la biosfera en su conjunto.

Todo esto de la física y la biología, materia viva y materia inerte, necesita de un estudio muy profundo. He pensado mucho en ello y, particularmente (algunos dirán que estoy loco), pienso que la materia es sólo una, que se nos presenta en distintas formas, unas más evolucionadas y más complejas que otras; unas en fase inerte y otras en su fase más avanzada: viva.

Físicos como Hermann von Helmholtz en  1850, midió la velocidad de propagación del impulso nervioso, y James Clark Maxwell, sobre 1857, presentó la teoría de la visión en colores.

Podríamos hablar de materia, de luz, de electromagnetismo, y acaso, ¿no son todas esas cuestiones distintos aspectos y variantes de la misma cosa?

Leer más

Velocidades inimaginables

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético.

Leer más

Moléculas, agregados, sustancias…Materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Química    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.

Refiriéndonos al silicio, que para nosotros es el más importante, señalaremos que las “moléculas” que dicho átomo forma con el oxígeno y otros átomos, generalmente metálicos poseyendo gran nivel de información, difieren en varios aspectos de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.

El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas. Esas diferencias se refieren fundamentalmente a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente. Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de Van der Waals, que pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas. En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.

Al igual que para los cristales de hielo, en la mayoría de los silicatos la información que soportan es pequeña, aunque conviene matizar este punto.  Para un cristal ideal así sería en efecto, pero ocurre que en la realidad el cristal ideal es una abstracción, ya que en el cristal real existen aquí y allá los llamados defectos puntuales que trastocan la periodicidad espacial propia de las redes ideales. Precisamente esos defectos puntuales podían proporcionar una mayor información.

Si prescindimos de las orgánicas, el resto de las moléculas que resultan de la combinación entre los diferentes átomos no llega a 100.000, frente a los varios millones de las primeras. Resulta ranozable suponer que toda la enorme variedad de moléculas existentes, principalmente en los planetas rocosos, se haya formado por evolución de los átomos, como corresponde a un proceso evolutivo. La molécula poseería mayor orden que los átomos de donde procede, esto es, menor entropía. En su formación, el ambiente se habría desordenado al ganar entropía en una cierta cantidad tal, que arrojarse un balance total positivo.

No puedo dejar pasar la oportunidad, aunque sea de pasada, de mencionar las sustancias.

Las así llamadas, son cuerpos formados por moléculas idénticas, entre las cuales pueden o no existir enlaces químicos. Veremos varios ejemplos.  Las sustancias como el oxígeno, cloro, metano, amoníaco, etc, se presentan en estado gaseoso en condiciones ordinarias de presión y temperatura. Para su confinamiento se embotellan, aunque existen casos en que se encuentran mezcladas en el aire (os podéis dar una vueltecita por el polo químico de Huelva).

En cualquier caso, un gas como los citados consiste en un enjambre de las moléculas correspondientes. Entre ellas no se ejercen fuerzas, salvo cuando colisionan, lo que hacen con una frecuencia que depende de la concentración, es decir, del número de ellas que están concentradas en la unidad de volumen; número que podemos calcular conociendo la presión y temperatura de la masa de gas confinada en un volumen conocido.

Decía que no existen fuerzas entre las moléculas de un gas. En realidad es más exacto que el valor de esas fuerzas es insignificante porque las fuerzas residuales de las electromagnéticas, a las que antes me referí, disminuyen más rápidamente con la distancia que las fuerzas de Coulomb; y esta distancia es ordinariamente de varios diámetros moleculares.

Podemos conseguir que la intensidad de esas fuerzas aumente tratando de disminuir la distancia media entre las moléculas. Esto se puede lograr haciendo descender la temperatura, aumentando la presión o ambas cosas.  Alcanzada una determinada temperatura, las moléculas comienzan a sentir las fuerzas de Van der Waals y aparece el estado líquido; si se sigue enfriando aparece el sólido. El orden crece desde el gas al líquido, siendo el sólido el más ordenado. Se trata de una red tridimensional en la que los nudos o vértices del entramado están ocupados por moléculas.

Todas las sustancias conocidas pueden presentarse en cualquiera de los tres estados de la materia (estados ordinarios y cotidianos en nuestras vidas del día a día).

Si las temperaturas reinantes, como decíamos en páginas anteriores, es de miles de millones de grados, el estado de la materia es el plasma, el material más común del universo, el de las estrellas (aparte de la materia oscura, que no sabemos ni lo que es, ni donde está, ni que “estado” es el suyo).

En condiciones ordinarias de presión, la temperatura por debajo de la cual existe el líquido y/o sólido depende del tipo de sustancia. Se denomina temperatura de ebullición o fusión la que corresponde a los sucesivos equilibrios (a presión dada) de fases: vapor ↔ líquido ↔ sólido. Estas temperaturas son muy variadas, por ejemplo, para los gases nobles son muy bajas; también para el oxígeno (O2) e hidrógeno (H2). En cambio, la mayoría de las sustancias son sólidos en condiciones ordinarias (grasas, ceras, etc).

Las sustancias pueden ser simples y compuestas, según que la molécula correspondiente tenga átomos iguales o diferentes. El número de las primeras es enormemente inferior al de las segundas.

El concepto de molécula, como individuo físico y químico, pierde su significado en ciertas sustancias que no hemos considerado aún. Entre ellas figuran las llamadas sales, el paradigma de las cuales es la sal de cocina. Se trata de cloruro de  sodio, por lo que cualquier estudiante de E.G.B. escribiría sin titubear su fórmula: Cl Na. Sin embargo, le podríamos poner en un aprieto si le preguntásemos dónde se puede encontrar aisladamente individuos moleculares que respondan a esa composición. Le podemos orientar diciéndole que en el gas Cl H o en el vapor de agua existen moléculas como individualidades. En realidad y salvo casos especiales, por ejemplo, a temperaturas elevadas, no existen moléculas aisladas de sal, sino una especie de molécula gigante que se extiende por todo el cristal. Este edificio de cristal de sal consiste en una red o entramado, como un tablero de ajedrez de tres dimensiones, en cuyos nudos o vértices se encuentran, alternativamente, las constituyentes, que no son los átomos de Cl y Na sino los iones Cl y Na+.  El primero es un átomo de Cl que ha ganado un electrón, completándose todos los orbitales de valencia; el segundo, un átomo de Na que ha perdido el electrón del orbital s.

Cuando los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro. El resultado es que la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl. Las fuerzas electromagnéticas entre esos iones determinan su ordenación en un cristal, el Cl Na. Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals. Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.

emilio silvera

Einstein, Kaluza, Witten: Las teorías avanzan

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ya he comentado que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y Suzuki, y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”.  Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto como las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría”.

La característica más notable de la teoría de cuerdas (como ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.

Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas”.

No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de forma diferente.

Leer más

Entropía, púlsares, distancias…

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ENTROPÍA:

Se denota con el símbolo S y está referida a la medida de la NO disponibilidad de la energía de un sistema para producir trabajo; en un sistema cerrado, un aumento de la entropía está acompañado por un descenso en la energía disponible.  Cuando un sistema desarrolla un cambio reversible, la entropía (s) cambia en una cantidad igual a la energía transferida al sistema en forma de calor (Q) dividida por la temperatura termodinámica a la cual tiene lugar el proceso (T), es decir:

<> ΔS=Q/T.Sin embargo, todos los procesos reales son en un cierto grado cambios irreversibles y en cualquier sistema cerrado un cambio irreversible siempre está acompañado de un aumento de la entropía.

En un sentido más amplio la entropía puede ser interpretada como una medida del desorden; cuanto mayor es la entropía, mayor es el desorden.

Como cualquier cambio real en un sistema cerrado tiende a una mayor entropía, y por tanto a un mayor desorden, se deduce que si la entropía del Universo está aumentando, la energía disponible está decreciendo (muerte térmica del Universo), si se considera el Universo como un sistema cerrado.  Este aumento de la entropía del Universo es una manera de formular el segundo principio de la termodinámica.

También nosotros mismos, considerados individualmente, como sistemas cerrados, estamos afectados por la entropía que, con el paso del tiempo aumenta y perdemos energía ganando en desorden.  El desorden físico de nuestro sistema animal que, inexorablemente se encamina, imparable, al caos final.  Claro que, mientras eso llega, tenemos la obligación ineludible de contribuir, en la forma que cada cual pueda, para que el mañana sea mejor para aquellos que nos siguen.

Leer más