viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo que te gustaría saber I

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

George J. Stoney, el físico irlandés y pensador excéntrico y original al que, en realidad, debemos la forma de deducir si otros planetas del sistema solar poseían o no una atmósfera gaseosa, como la Tierra, calculando si su gravedad superficial era suficientemente intensa para mantener esa atmósfera.

Pero su pasión real estaba reservada a su idea más preciada: el “electrón”. Stoney había deducido que debía existir un componente básico de carga eléctrica. Estudiando los experimentos de Michael Faraday sobre electrolisis, Stoney había predicho incluso cuál debía ser su valor, una predicción posteriormente confirmada por J. J. Thomson, descubridor del electrón en Cambridge en 1.897, dándole la razón a Stoney que finalmente, a esta unidad básica de la electricidad, le dio el nombre de electrón con el símbolo e en 1.891 (antes de su descubrimiento).

Stoney, primo lejano y más viejo del famoso matemático, científico de computación y criptógrafo Alan Turing, también era tío de George Fitzgerald, después famoso por proponer la “contracción Fitzgerald-Lorentz”, un fenómeno que fue entendido finalmente en el contexto de la teoría de la relatividad especial de Einstein.

Stoney, podemos decir con seguridad, fue el primero que señaló el camino para encontrar lo que más tarde conoceríamos como constantes fundamentales, esos parámetros de la física que son invariantes, aunque su entorno se transforme. Ellas, las constantes, continúan inalterables como sucede, por ejemplo, con la velocidad de la luz c, que sea medida en la manera que sea, esté en reposo o esté en movimiento quien la mide o la fuente de donde parte, su velocidad será siempre la misma, 299.792.458 m/s. Algo análogo ocurre con la gravedad, G, que en todas partes mide el mismo parámetro  o valor: G = 6’67259 × 10-11 m3 s-2 Kg-1. Es la fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de la masa de los cuerpos y de la distancia entre ellos; la fuerza gravitacional disminuye con el cuadrado de la distancia de acuerdo a la ley de la inversa del cuadrado.

Profesor de filosofía natural (así llamaban antes a la Física) en el Queen’s College Galway en 1.860, tras su retiro se trasladó a Hornsey, al norte de Londres, y continuó publicando un flujo de artículos en la revista científica de la Royal Dublín Society, siendo difícil encontrar alguna cuestión sobre la que no haya un artículo firmado por él.

Stoney recibió el encargo de hacer una exposición científica del tema que él mismo eligiera para el programa de la reunión de Belfast de la Asociación Británica. Pensando en qué tema elegir, se dio cuenta de que existían medidas y patrones e incluso explicaciones diferentes para unidades que median cosas o distancias o algún fenómeno: se preguntaba la manera de cómo definirlos mejor y como interrelacionarlos. Vio una oportunidad para tratar de simplificar esta vasta confusión de patrones humanos de medida de una manera tal que diese más peso a su hipótesis del electrón.

En tal situación, Stoney centró su trabajo en unidades naturales que transcienden los patrones humanos, así que trabajó en la unidad de carga electrónica (según su concepto), inspirado en los trabajos de Faraday como hemos comentado antes. También, como unidades naturales escogió G y c que responde, como se ha explicado, a la gravedad universal y la velocidad de la luz en el vacío.

En su charla de la Reunión de Belfast, Stoney se refirió al electrón como el “electrino” y dio el primer cálculo de su valor esperado. Demostró que el trío mágico de G, c y e podía combinarse de una manera, y sólo de una, de modo que a partir de ellas se creaban una unidad de masa, una unidad de longitud y una unidad de tiempo. Para la velocidad de la luz utilizó un promedio de las medidas existentes, c = 3 × 108 metros por segundo; para la constante de gravitación de Newton utilizó el valor obtenido por John Herschel, G = 6’67259 × 10-11 m3 s-2 Kg-1, y para la unidad de carga del “electrino” utilizó e = 10-20 amperios. Estas fueron las inusuales nuevas unidades que él encontró, en términos de las constantes e, c y G, y en términos de gramo, metros y segundos:

Estas son cantidades extraordinarias. Aunque una masa de 10-7 gramos no es demasiado espectacular – es similar a la de una mota de polvo – las unidades de longitud y tiempo de Stoney eran muy diferentes de cualquiera que hubieran encontrado antes los científicos.  Eran fantásticamente pequeñas, rozando lo inconcebible. No había (y sigue sin haber) ninguna posibilidad de medir directamente tales longitudes y tiempos. En cierto modo, esto es lo que se podría haber esperado. Estas unidades no están construidas deliberadamente a partir de dimensiones humanas, por conveniencia humana o para utilidad humana.  Están definidas por la propia fábrica de la realidad física que determina la naturaleza de la luz, la electricidad y la gravedad.  No se preocupan de nosotros. Stoney triunfó de un modo brillante en su búsqueda de un sistema de unidades sobrehumanas.

“La ciencia no puede resolver el misterio final de la Naturaleza.  Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”.

Max Planck

 

Las unidades naturales de Max Planck

La idea de Stoney fue descubierta en una forma diferente por el físico alemán Max Planck en 1.899, un año antes de que expusiera al mundo su teoría del “cuanto de acción” h.

Planck es uno de los físicos más importantes de todos los tiempos.  Como antes he apuntado, descubrió la naturaleza cuántica de la energía que puso en marcha la revolución cuántica de nuestra comprensión del mundo, ofreció la primera descripción correcta de la radiación térmica (“espectro de Planck”) y una de las constantes fundamentales de la naturaleza lleva su nombre.

Ganador del premio Nobel de Física de 1.918, también fue, en el primer momento, el único que comprendió la importancia que, para la física y para el mundo, tendría el artículo del joven Einstein, en 1.905, sobre la teoría de la relatividad especial.  Hombre tranquilo y modesto que fue profundamente admirado por sus contemporáneos más jóvenes, como el mismo Einstein y Bohr.

La concepción que tenía Planck de la naturaleza ponía mucho énfasis en su racionalidad intrínseca y en su independencia del pensamiento humano. Había que encontrar esas estructuras profundas que estaban lejos de las necesidades de la utilidad y conveniencia humanas pero que, en realidad, estaban ahí ocultas en lo más profundo de los secretos naturales y eran las responsables de que nuestro mundo, nuestro universo, fuese tal como lo conocemos.

En el último año de su vida un antiguo alumno le preguntó si creía que buscar la forma de unir todas las constantes de la naturaleza mediante alguna teoría más profunda era atractivo. Le contestó con el entusiasmo templado por el realismo y experiencia conociendo cuantas dificultades entrañaba tal empresa.

“Su pregunta sobre la posibilidad de unificar todas las constantes universales de la naturaleza, es sin duda una idea atractiva.  Por mi parte, sin embargo, tengo dudas de que se logre con éxito. Pero puedo estar equivocado”

A diferencia de Einstein, Planck no creía que se pudiera alcanzar realmente una teoría globalizadora que explicara todas las constantes de la naturaleza.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting