viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo que te gustaría saber II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mientras que Stoney había visto en la elección de unidades prácticas una manera de cortar el nudo gordiano de la subjetividad, Planck utilizaba sus unidades especiales para sustentar una base no antropomórfica para la física y que, por consiguiente, podría describirse como “unidades naturales”.

De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que ahora lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura.  Sus valores no difieren mucho de los de Stoney:

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032      ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

En las unidades de Planck (del recuadro en rojo), una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros.

De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo.

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

Max Planck

Podemos ver que Max Planck apelaba a la existencia de constantes universales de la naturaleza como prueba de una realidad física al margen y completamente diferentes de las mentes humanas. Al respecto decía:

“Estos…números, las denominadas constantes universales son en cierto sentido los ladrillos inmutables del edificio de la física teórica. Deberíamos preguntar:

¿Cuál es el significado real de estas constantes?”

Una de las paradojas de nuestro estudio del universo circundante es que a medida que las descripciones de su funcionamiento se hacen más precisas y acertadas, también se alejan cada vez más de toda la experiencia humana.

“Lo que realmente me interesa es si Dios podría haber hecho del mundo una cosa diferente; es decir, si la necesidad de simplicidad lógica deja la más mínima libertad.”

Albert Einstein

Einstein hizo más que cualquier otro científico por crear la imagen moderna de las leyes de la naturaleza. Desempeñó un papel principal en la creación de la perspectiva correcta sobre el carácter atómico y cuántico del mundo material a pequeña escala, demostró que la velocidad de la luz introducía una relatividad en la visión del espacio de cada observador, y encontró por sí solo la teoría de la gravedad que sustituyó la imagen clásica creada por Isaac Newton más de dos siglos antes que él. Su famosa fórmula de      E = mc2 es una fórmula milagrosa, es lo que los físicos definen como la auténtica belleza. Decir mucho con pocos signos y, desde luego, nunca ningún físico dijo tanto con tan poco. En esa reducida expresión de E = mc2, está contenido uno de los mensajes de mayor calado del universo: masa y energía, son la misma cosa.

Einstein siempre estuvo fascinado por el hecho de que algunas cosas deben parecer siempre iguales, independientemente de cómo se mueva el que las ve, como la luz en el vacío, c.

Él nos dijo el límite con que podríamos recibir información en el universo, la velocidad de c.

Él reveló todo el alcance de lo que Stoney y Planck simplemente habían supuesto: que la velocidad de la luz era una constante sobrehumana fundamental de la naturaleza. También sabía el maestro que, en el proceso de nuevas teorías, la búsqueda de la teoría final que incluyera a otras fuerzas de la naturaleza distintas de la gravedad, daría lugar a teorías nuevas y cada vez mejores que irían sustituyendo a las antiguas teorías. De hecho, él mismo la buscó durante los 30 últimos años de su vida pero, desgraciadamente, sin éxito. Ahora se ha llegado a la teoría de supercuerdas que sólo funciona en 10 y 26 dimensiones y es la teoría más prometedora para ser la candidata a esa teoría final de la que hablan los físicos.

El físico espera que las constantes de la naturaleza respondan en términos de números puros que pueda ser calculado con tanta precisión como uno quiera. En ese sentido se lo expresó Einstein a su amiga Ilse Rosenthal-Schneider, interesada en la ciencia y muy amiga de Planck y Einstein en la juventud.

Lo que Einstein explicó a su amiga por cartas es que existen algunas constantes aparentes que son debidas a nuestro hábito de medir las cosas en unidades particulares. La constante de Boltzmann es de este tipo. Es sólo un factor de conversión entre unidades de energía y temperatura, parecido a los factores de conversión entre las escalas de temperatura Fahrenheit y centígrada. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud.  Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.

La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza al tener que pensar en tan reducidas unidades, y sólo a finales de la década de 1.960 el estudio renovado de la cosmología llevó a una plena comprensión de estos patrones extraños. Uno de los curiosos problemas de la Física es que tiene dos teorías hermosamente efectivas (la mecánica cuántica y la relatividad general)  pero gobiernan diferentes dominios de la naturaleza.

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua. Se parece más a una ola delictiva o una ola de histeria: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting