Sep
16
Radiación, partículas alfa y beta: Física
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
Si repasamos la historia de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Witten está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck. Como ya he contado en otras ocasiones, él dijo:
“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante 25 años.”
En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación. El astrónomo arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado. El premio Nobel Paul dirac incluso llegó a decir de forma más categórica: “Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos años, «Es sólo el optimista el que consigue algo en este mundo».“
Sep
16
El Universo de las partículas I
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?
Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento que actualmente tenemos del átomo y del núcleo; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.
Partículas
El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.
El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.
Sep
16
El Universo de las Partículas II
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.
Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.
Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.
Sep
16
Historias maravillosas
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Georg Bernhard Riemann lo empezó todo. Es el responsable del descubrimiento del espacio multidimensional. Anticipando el siglo siguiente de progreso científico, Riemann fue el primero en afirmar que la naturaleza encuentra su ámbito natural en la geometría del espacio multidimensional, y gracias a su visión inicial, pudieron plasmarse en realidad teorías como las de la relatividad general de Einstein, en cuatro dimensiones, la de Kaluza-Klein, en cinco dimensiones, o la más reciente teoría de cuerdas de diez dimensiones.
El nombrarlo aquí es sólo cuestión de justicia. No podemos hablar de espacios multidimensionales sin nombrar a Riemann que, nacido el 17 de septiembre de 1.826, con su golpe maestro al dar aquella conferencia en la facultad de la universidad de Gotinga en Alemania, dejó pasar un rayo de luz a todas las mentes científicas, no ya de su propio tiempo, sino a las del siglo siguiente.
Bien es verdad que, de momento, nuestras mentes sólo son capaces de percibir el universo de cuatro dimensiones, tres espaciales y una temporal, con las que cotidianamente nos desenvolvemos. Esto quiere decir que sólo hemos sido capaces de reproducir las dimensiones más altas en la teoría de los números, y nuestras mentes (al menos la mía) por mucho que lo intente, no son capaces de ver un mundo de más dimensiones; no podemos. Tenemos que evolucionar para poder captar ese nuevo universo de más dimensiones que acogería, sin crear problemas, todas las cuestiones científicas hoy antagónicas, como la relatividad general y la mecánica cuántica.