lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La curiosidad que lleva a saber

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me referiré ahora aquí a un físico extraño. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de datos astronómicos complicados o como diseñador de sofisticados instrumentos de medida.

Tenía los intereses científicos más amplios y diversos que imaginarse pueda. Él decía que al final del camino todos los conocimientos convergen en un solo punto, el saber.

Así de curioso, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra para comprobar la idea de la constante gravitatoria variable de Dirac que podía ser sometida a una gran cantidad de pruebas observacionales, utilizando los datos de la geología, la paleontología, la astronomía, la física de laboratorio y cualquier otro que pudiera dar una pista sobre ello. No estaba motivado por el deseo de explicar los grandes números. Hacia mediados de la década de los 60 hubo una motivación adicional para desarrollar una extensión de la teoría de la gravedad de Einstein que incluye una G variable. En efecto, durante un tiempo pareció que las predicciones de Einstein no coincidían en lo referente o sobre el cambio de órbita de Mercurio que era distinta a las observaciones cuando se tenía en cuentra la forma ligeramente achatada del Sol.

Robert Dicke, que este era el nombre del extraño personaje, y su estudiante de investigación Carl Brans, en 1.961, demostraron que si se permitía una variación de G con el tiempo, entonces podía elegirse un ritmo de cambio para tener un valor que coincidiera con las observaciones de la órbita de Mercurio. Lamentablemente, se descubrió que todo esto era una pérdida de tiempo. El desacuerdo con la teoría de Einstein a inexactitudes de nuestros intentos de medir el diámetro del Sol que hacían que este pareciera tener una forma de órbita diferente a la real. Con su turbulenta superficie, en aquel tiempo, no era fácil medir el tamaño del Sol. Así que, una vez resuelto este problema en 1.977, desapareció la necesidad de una G variable para conciliar la observación con la teoría.

De todas las maneras, lo anterior no quita importancia al trabajo realizado por Dicke que preparó una revisión importante de las evidencias geofísicas, paleontológicas y astronómicas a favor de posibles variaciones de las constantes físicas tradicionales. Hizo la interesante observación de explicar los “grandes números” de Eddington y Dirac bajo el apunte de que allí tenía que subyacer algún aspecto biológico que de momento no éramos capaces de ver.

“El problema del gran tamaño de estos números es ahora fácil de explicar… Hay un único número adimensional grande que tiene su origen estático. Este es el número de partículas del universo. La edad del universo “ahora” no es aleatoria sino que está condicionada por factores biológicos… porque algún cambio en los valores de grandes números impedirían la existencia del hombre para considerar el problema”.

Cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los grandes números de Dirac, en una breve carta que se publicó en la revista Nature. Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono, nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal. (El argumento se aplica con la misma fuerza a cualquier forma de vida basada en cualesquiera elementos atómicos más pesados que el helio). Cuando las estrellas mueren, las explosiones que constituyen las supernovas dispersan estos elementos biológicos “pesados” por todo el espacio, de donde son incorporados en granos, planetesimales, planetas, moléculas “inteligentes” auto replicantes como ADN y, finalmente, en nosotros mismos que, en realidad, estamos hechos de polvo de estrellas.

Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la naturaleza sean

t(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈

≈ 10.000 millones de años

No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) desde el Big Bang.

Así pues, el valor que del gran número nos dio Dirac N(t) no es en absoluto aleatorio. Debe tener un valor próximo al que toma N(t) cuando t esta cercano el valor t(estrella).

Todo lo que la coincidencia de Dirac dice es que vivimos en un tiempo de la Historia Cósmica posterior a la formación de las estrellas y anterior a su muerte. Esto no es sorprendente. Dicke nos está diciendo que no podríamos dejar de observar la coincidencia de Dirac: es un requisito para que exista vida como la nuestra

De esta forma Dicke nos vino a decir que:

“Para que el universo del Big Bang contenga las ladrillos básicos necesarios para la evolución posterior de la complejidad biológica-química debe tener una edad al menos tan larga, como el tiempo que se necesita para las reacciones nucleares en las estrellas produzcan esos elaborados elementos.”

Esto significa que el universo observable debe tener al menos diez mil millones de años y por ello, puesto que se está expandiendo, debe tener un tamaño de al menos diez mil millones de años luz. No podríamos existir en un universo que fuera significativamente más pequeño.

Un argumento hermosamente simple con respecto a la inevitabilidad del gran tamaño del universo para nosotros aparece por primera vez en el texto de las Conferencias Bampton impartidas por el teólogo de Oxford, Eric Mascall. Fueron publicadas en 1.956 y el autor atribuye la idea básica a Gerad Whitrow.

Estimulado por las sugerencias Whitrow, escribe:

“Si tenemos tendencia a sentirnos intimidados sólo por el tamaño del universo, está bien recordar que en algunas teorías cosmológicas existe una conexión directa entre la cantidad de materia en el universo y las condiciones en cualquier porción limitada del mismo, de modo que en efecto puede ser necesario que el universo tenga el enorme tamaño y la enorme complejidad que la astronomía moderna ha revelado para que la Tierra sea un posible hábitat para seres vivos.”

Esta simple observación puede ampliarse para ofrecernos una comprensión profunda de los sutiles lazos que existen entre aspectos superficialmente diferentes del universo que vemos a nuestro alrededor y las propiedades

Claro que los procesos de la alquimia estelar necesitan tiempo: miles de millones de años de tiempo. Y debido a que nuestro universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida. Un universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión y no habría producido esos elementos básicos para la vida.

El universo tiene la curiosa propiedad de hacer que los seres vivos piensen que sus inusuales propiedades son poco propicias para la vida, para la existencia de vida, cuando de hecho, es todo lo contrario; las propiedades del universo son esenciales para la vida. Lo que ocurre es que en el fondo tenemos miedo; nos sentimos muy pequeños ante la enorme extensión y tamaño del universo que nos acoge. Sabemos aún muy poco sobre sus misterios, nuestras capacidades son limitadas y al nivel de nuestra tecnología actual estamos soportando el peso de una gran ignorancia sobre muchas cuestiones que necesitamos conocer. Con sus miles de millones de galaxias y sus cientos de miles de millones de estrellas, si niveláramos todo el material del universo para conseguir un mar uniforme de materia, nos daríamos cuenta de lo poco que existe de cualquier cosa. La media de materia del universo está en aproximadamente 1 átomo por cada metro cúbico de espacio. Ningún laboratorio de la Tierra podría producir un vacío artificial que fuera remotamente parecido al vacio del espacio estelar. El vacío más perfecto que hoy podemos alcanzar en un laboratorio terrestre contiene aproximadamente mil millones de átomos por m3.

Esta nueva manera de mirar el universo nos da nuevas ideas, no todo el espacio son agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son condiciones necesarias para que existan observadores inteligentes como nosotros. No debería sorprendernos la vida extraterrestre; si existe, pudiera ser tan rara y lejana para nosotros como en realidad nos ocurre aquí mismo en la Tierra, donde compartimos hábitat con otros seres vivos con los que hemos sido incapaces de comunicarnos, a pesar de que esas formas de vida, como la nuestra, están basadas también en el carbono. No se puede descartar formas de vida inteligente basadas en otros elementos, como por ejemplo, el silicio.

La baja densidad media de materia en el universo significa que si agregáramos material en estrellas o galaxias, deberíamos esperar que las distancias medias entre objetos fueran enormes.

El universo visible contiene sólo:

1 átomo por metro cúbico

1 Tierra por (10 años luz)3

1 Estrella por (103 años luz)3

1 Galaxia por (107 años luz)3

1 “Universo” por (1010 años luz)3

El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar entre los planetas, estrellas y galaxias. No debería sorprendernos que encontrar vida extraterrestre sea tan raro.

De todas las maneras, no pierdo la esperanza.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting