lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1.957, el astrónomo alemán Wilhelm Gliese publicó un catálogo de estrellas cercanas al Sol. La número 581 de su lista era un astro insignificante situado a unos 20 años-luz, con sólo un tercio de la masa solar y la centésima parte de su luminosidad. Una enana roja más, probablemente el tipo de estrella más común en el Universo.

Medio siglo después, Gliese 581 ha saltado a la fama. En 2.005, un equipó capitaneado por los veteranos cazadores del planetas: Michel Mayor y Didier Queloz, descubrió, casi pegado a la estrella, un planeta (Gliese 581b) de unas 15 masas terrestres.

Recientemente, el mismo grupo, ha refinado sus observaciones, que han revelado la presencia de dos compañeros del anterior: a 10 millones de kilómetros de la estrella orbíta Gliese 581c, de sólo unas 5 veces la masa terrestre; y, a 37 M Kilómetros, Gliesed, que pesa como 8 Tierras. Ambos son netamente mayores que nuestro planeta y menores que los gigantes de hielo (Urano y Neptuno, 14 y 17 masas terrestres). En los últimos años, este tipo de planetas, inexistentes en el Sistema Solar, se han venido denominando supertierras.

Nuestro planeta, como sabéis, circula a la respetable distancia de 150 millones de kilómetros del Sol, 1 Unidad Astronómica, lo que permite apreciar lo cerca que están los nuevos planetas de la estrella madre. Los tres serían bolas de fuego si orbitasen en torno a una estrella como la nuestra, pero las enanas rojas son hogueras suaves: sus descubridores han aventurado que Gliese 581c podría mantener agradables temperaturas, entre -3 y + 40° C. Y la ecuación: Posibilidad de agua líquida en un planeta=a vida.

¿Existe atmósfera? Los cazadores son, naturalmente, más cautos. La temperatura dependerá del tipo (o tipos) de superficie del planeta y de la abundancia y composición de sus nubes. Los oscuros bosques y mares de la Tierra absorben hasta el 90% de la radiación solar, mientras que el hielo refleja el 80‰ Pero sobre todo es la composición de la atmósfera de un planeta, su riqueza en gases de invernadero, la que rige, mucho más que la estrella, su clima. Así que, a falta de estos datos, este rango de temperatura es solo una especulación razonable. En lo referente al agua y a la atmósfera, dadas las dimensiones de esos planetas parece un cálculo razonable y razonado.

Todo esto, el comentario, sólo es una muestra pequeña de la inquietud que tenemos en buscar sustitutos a la Tierra, en nuestro subsconciente, sabemos que, algún día, necesitaremos nueva casa.

Sin embargo, en este punto crucial de la exploración planetaria, el descubrimiento de supertierras en sistemas planetarios sin jovianos nos lleva a un panorama nuevo y vertiginoso: quizá los joviamos sean los elefantes del zoo planetario, que podría estar poblado sobre todo por animales más pequeños en números enormes. Podrían existir incontables planetas-insectos.

Esos enormes planetas, tienen una enorme fuerza gravitatoria y, seres como nosotros, seríamos literalmene aplastados contra la superficie, allí solo pueden existir seres de peso ínfimo a los que la gravedad no les afecte apenas.

A 27 de Abril 2009, han contabilizados unos 300 planetas fuera del Sistema Solar. No tenemos amplios datos sobre ellos, pero sí podemos decir que, ahí fuera, existen cientos de miles de planetas que, al ser de distintas características, unos tendrán agua y atmósfera y las dimensiones idóneas para albergar la vida. ¿Inteligente? Esa es otra historia que requeriría algunos cientos de miles de páginas para tratar en profundidad. Sin embargo, pensemos:

Sólo en nuestra Galaxia existen 100.000 millones de estrellas. El Universo está poblado por cientos de miles de millones de Galaxias cuyo promedio es también de 100 mil millones de estrellas cada una.

En cada galaxia existen miles de miles de millones de soles con sus planetas, lo que supone una cantidad enorme de mundos.

¿Podemos pensar que de entre cientos y cientos de miles de millones de planetas, solo la Tierra alberga la vida inteligente? Parece algo pretencioso, ¿no os parece?

El Universo está lleno de vida que se aparece en mil formas diferentes, unas inteligentes y otras vegetativas, de distintas morfologías e incluso distintas en sus componentes básicos que, a diferencia de la nuestra, basada en el carbono, aquellas podrán tener u origen vital en el silicio o vaya usted a saber de qué componentes podrían estar formadas y si han dado origen a civilizaciones inteligentes que ni podemos imaginar.

No tenemos que asombrarnos de nada, nosotros mismos, de seguro asombraríamos a una raza inteligente que nos pudiera observar y viera que la patente n° 6.754.472, ha sido concedida a Microsoft y ampara los mecanismos o procedimientos para “transmitir datos y energía utilizando el cuerpo humano”. Se trata, según aparece, de aprovechar la conductividad de la piel para conectar una serie de dispositivos electrónicos por todo el cuerpo.

Me viene a la mente una escena futurista en la cual, una raza avanzada, conecta un dispositivo metálico en la sien de un humano y, en una pantalla, aparecen las imágenes de sus recuerdos. Sí, pueden parecer exageraciones, pero a mí particularmente, me parecen escenas cotidianas de cualquier día del siglo XXIII.

Es increíble lo que puede desarrollar la mente humana y, sus logros, no parece que puedan tener barreras. En cada época aparece un científico que mejora los descubrimientos de sus antecesores, así ocurrió con Newton y Einstein, por ejemplo.

En el año 1.927, en un Congreso de Física celebrado en Como (Lago de Italia, provincia de Como, en Lombardía, al pie de los Alpes, atravesado por el río Adda y rodeado por colinas cubiertas de bosques que lo hacen muy pintoresco), Niels Bohr habló por primera vez del “Principio de complementariedad”, una idea que tuvo fortuna científica y fortuna literaria. Esta mezcla suele poner de los nervios a los científicos, que consideran escandaloso, y con razón, que se usen conceptos científicos fuera de su contexto. Todos hemos visto aplicar las ideas de relatividad, caos, fractales, indeterminación, singularidad (que no tienen sentido fuera de su expresión matemática) para hablar de todo lo divino y lo humano.

Aquel Congreso quedó inscrito en los anales de la historia de la Física. Asistieron Born, Compton, Fermi, Heisemberg, Lorentz, Millikan, Pauli, Planck, Sommerferld, es decir, lo más reluciente del ingenio humano en la Física del momento, a excepción de Einstein que, por motivos personales, no asistió.

En su enunciado Bohr dijo que quería resolver las diferencias insalvables que había entre la descripción clásica de los fenómenos físicos y la descripción cuántica. La diferencia fundamental (dicho en plan coloquial) era que la Física clásica creía en la realidad de los fenómenos, mientras que la cuántica pensaba que el estado del sistema depende del observador.

Puso como ejemplo la naturaleza de la luz.

¿Es una onda o una partícula?

Para explicar los fenómenos de interferencia hay que considerarla onda, pero para explicar la interacción entre radiación y materia, conviene considerarla corpúsculo. Bohn propuso su “Principio de complementariedad”. El fenómeno depende del sistema de observación y, en último término, la realidad no sería más que el resultado de todos los sistemas posibles de observación.

Muchos años después, Richar Feynman, con su contundencia habitual dijo: “La dualidad de la luz es el único misterio de la Física”. Bueno, añadió otra cosa: “La teoría cuántica está simplemente más allá de cualquier explicación”.

A partir del Congreso de Como, todos los físicos (menos Einstein) se hicieron Kantianos. Recordad que Kant había separado la “cosa en sí” de las cosas tal y como aparecen en nuestro conocimiento, es decir, de los fenómenos. Nosotros sólo podemos conocer los fenómenos, nunca las cosas tal como son en realidad. Esto ha suscitado muchas disputas entre los físicos, que no saben si la realidad sometida al Principio de complementariedad es la última realidad, o hay otra más real por debajo, escondida allí donde no podemos verla. Es interesante seguir el proceso de invención de ese Principio, porque demuestra una vez más que un científico no llega a una teoría por un procedimiento racional, sino por una especie de golpe de intuición que salta en su cerebro y le sugiere la solución.

¿Saltará en mi cabeza, por fin, el secreto de las fluctuaciones de vacío en esa dichosa quinta dimensión, donde está escondida la materia oscura que nos envía gravitones a nuestra dimensión para hacerse sentir?

Jerome Bruner, un avispado psicólogo del pasado siglo, contó una conversación que había mantenido con Bohr acerca de la complementariedad del pensamiento y la emoción. El físico le confesó que su Principio se le había ocurrido meditando sobre si debía castigar o no a su hijo que había hecho una trastada. “Me di cuenta de que no se puede juzgar al mismo tiempo a la luz del amor y a la luz de la justicia”. En fin, había caído en el mismo problema en que se habían enfrascado los teólogos medievales al preguntarse si Dios podía ser a la vez justiciero y misericordioso.

Todo esto viene a cuento porque acabo de leer un artículo sobre un tal Shabriar S. Afshar y sus experimentos en el Institute for Radiation Induce Studies (Boston). Este señor, cree haber encontrado, o mejor, dice haber demostrado que Borh estaba equivocado. Dicho más técnicamente, se puede seguir el rastro de un fotón sin alterar el patrón de interferencias. Considera que la realidad tiene propiedades definidas y evaluables.

Pero da un paso más. Entre el fotón y la onda, escoge la onda. Más aún, piensa que si el resultado de sus experimentos se repite usando otras partículas, es la mecánica cuántica entera la que está en dificultades. Y ya en el disparadero, obtiene una última consecuencia. Si el fotón no existe, habría que retirarle a Einstein el Premio Nobel que ganó en 1.921.

Desde luego algunos no se paran en barra a la hora de ganar notoriedad, y, además, siempre encuentran una cohorte de acólitos que están dispuestos a seguirles. Llama la atención el editorial que ha publicado “New Scientist”. Reconociendo que los experimentos de Afshar tienen que ser corroborados, sin embargo, aplaude fervorosamente su intento. “La ortodoxia cuántica ha sido aceptada durante demasiado tiempo sin cuestionar su autoridad. Afshar, continúa, sigue el mejor camino de la tradición científica: explorar los misterios, no oscurecerlos.

emilio silvera

 

  1. 1
    Ramon Marquès
    el 13 de marzo del 2009 a las 19:35

    Hola amigo:
    Sobre la materia oscura. Una vez más coincidimos, Emilio. Para mi la materia oscura tiene efecto frenado y, consiguientemente, gravedad. Pero no tiene la capacidad del colapso de onda, por lo que se mantiene en el espacio vibratorio en expansión. ¡O lo que tu llamas quinta dimensión y desde allí envía el efecto gavitatorio!.
    Un abrazo. Ramon Marquès

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting