Ene
29
AIA-IYA2009. Año Internacional de la Astronomía
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
LA QUÍMICA DE LAS ESTRELLAS
Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat; Römer, quien midió la velocidad de la luz; Grimaldi, que estudió la difracción; Torricelli, que demostró la existencia del vacío; Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.
La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.
Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada -“clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.
En 1814, Joseph Fraunhofer (1787-1826) realizó observaciones básicas sobre las líneas que Wollaston había visto en el espectro solar: sumaban más de 600 y eran iguales a las de los espectros de la Luna y de los planetas; también los espectros de Póux, Capella y Porción son muy similares, mientras que los de Sirio y Cástor no lo son. Al perfeccionar el espectroscopio con la invención de la retícula de difracción (más potente y versátil que el prisma de cristal), Fraunhofer observó en el espectro solar las dos líneas del sodio: así se inició el análisis espectral de las fuentes celestes.
Ene
29
Más sobre Física
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Como se ha explicado algunas veces, las cuerdas asociadas con los bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquella asociadas con los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Ya se ha explicado en otras oportunidades que las dimensiones extras, además de las normales que podemos constatar, tres de espacio y una de tiempo, como la teoría de Kaluza-Klein, están enrolladas en una distancia de Planck. De momento, inalcanzables.
Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones (las partículas que transportan la gravedad y que aún no se han podido localizar). Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la interacción gravitacional. Se piensa que las supercuerdas, al contrario que ocurre con otras teorías (entre ellas el Modelo Estándar), están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero se está a la búsqueda de la prueba definitiva.
Aunque no hay evidencia directa de las supercuerdas, algunas características de las supercuerdas son compatibles con los hechos experimentales observados en las partículas elementales, como la posibilidad de que las partículas no respeten paridad, lo que en efecto ocurre en las interacciones débiles.
Ene
29
Srinivasa Ramanujan
por Emilio Silvera ~ Clasificado en General ~ Comments (2)
Srinivasa Ramanujan nació en 1.887 en Erode, India, cerca de Madrás. Su familia de clase media alta, brahmin, la más alta de las castas hindúes, fueron destituidos y venidos a menos. Su padre trabajaba de oficinista de un comerciante de tejidos.
Con diez años, lo mismo que pasó antes con Riemann, ya destacaba y sorprendía a todos con sus enormes poderes de cálculos. Siendo niño rederivó la identidad de Euler entre funciones trigonométricas y exponenciales.
En la vida de cada científico joven hay un punto de partida, un hecho que, sin ellos saberlo, les marca el destino. Para Einstein fue la fascinación que le causó la brújula que le regaló su tío cuando estaba enfermo siendo un niño, no podía apartar la mirada de la aguja que siempre indicaba hacia el mismo sitio, y se preguntó una y mil veces por la fuerza invisible que la obligaba a dirigirse hacia esa dirección. Para Riemann, fue la lectura del libro de matemáticas de Legendre. Para Ramanujan, fue cuando se sumergió en un oscuro y olvidado libro de matemáticas escrito por George Carr. Este libro ha quedado inmortalizado desde entonces por el hecho de que señaló la única exposición conocida de Ramanujan a las modernas matemáticas occidentales. Según su hermana: “Fue este libro el que despertó su genio. Él se propuso establecer por sí mismo las fórmulas dadas allí. Como no tenía la ayuda de otros libros, cada solución era un trabajo de investigación por lo que a él concernía… Ramanujan solía decir que la diosa Namakkal le inspiraba las fórmulas en sueños“.