Feb
16
Caprichos cósmicos
por Emilio Silvera ~ Clasificado en Sin categoría ~ Comments (8)
El concepto de vecindad es relativo e indefinido. Su valor puede variar según sean las distintas medidas de celeridad de los medios habituales de comunicación y según sea la extensión dentro de la cual sirva de medida de relación.
Con el empleo de la expresión “vecina” va siempre implícita o sugerida la idea de que existe una región que no es vecina. La vecina persistente de la Tierra es la Luna; los cometas son sólo visitantes ocasionales. Podemos considerar vecinas del Sol a las estrellas situadas a una distancia comprendida entre los cincuenta y cien años-luz, dejando excluidos a los miles de millones de estrellas de la Vía Láctea. Los planetas y los cometas no son vecinos del Sol, sino miembros de su familia, y los bólidos serían una especie de parásitos cósmicos.
Pero mi intención al comenzar este comentario, era el de exponer aquí alguno de los muchos caprichos cósmicos que en el Universo podemos contemplar y, en este caso concreto, me he decidido por contaros lo siguiente:
Cerca de la famosa estrella Rigel (Beta Orionis), la débil constelación de Lupus (la Liebre) es escenario cada catorce meses de un prodigio de la evolución estelar: R Leporis, la estrella carmesí, cobra vida y regala a los astrónomos toda su belleza al encender en la oscuridad del cielo el resplandor de color rojo más acentuado que puede observarse a través de un telescopio. La encontró el astrónomo inglés John Russell Hind en el año 1845 y dijo de ella, estupefacto, que era como una “gota de sangre”. Desde aquel día, el espectáculo celeste se repite periódicamente cada año y dos meses, cuando R Leporis abandona la oscuridad y resplandece como un candil en un área del firmamento casi vacía de estrellas que contrasta con el fulgor de los soles azules que forman la constelación de Orión.
R Leporis es una estrella de Carbono y constituye uno de esos caprichos cósmicos a los que antes me refería y que han permitido al hombre percibir la magia de los cielos y buscar en ellos la belleza de sus orígenes. La ausencia de colores intensos de las que adolece el firmamento se rompe aquí para deleite del observador nocturno, que asistía a un acontecimiento de la Naturaleza extensivo a miles de millones de estrellas y que en el siglo XVII asombró al científico alemán Johannes Hevelius.
Feb
15
La Nebulosa Carina NGC 3372 (Imagen a la derecha)
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
No podemos hablar de esta Nebulosa sin referirnos a la Constelación que la contiene. Carina como constelación austral que representa la quilla del barco Argo Navis. Contiene la segunda estrella más brillante del cielo, Canopus (Alfa Carinae). Otra estrella brillante es Beta Carinae (Miaplacidus). Eta Carinae es una estrella variable única embebida en la Nebulosa NGC 3372, que nos visita hoy y de la que hemos hablado aquí no hace mucho tiempo. En la Constelación se encuentran grupos importantes de cúmulos globulares entre los que cabe destacar NGC 2516 y NGC 3532, y también IC 2602.
Casi en todas las referencias que podamos encontrar de esta Nebulosa, podemos encontrar explicaciones como esta:
“En una de las partes más luminosas de la Vía Láctea se encuentra una nebulosa dónde ocurren algunas de las cosas más inusuales. NGC 3372, conocida como la Gran Nebulosa en Carina, es hogar de estrellas masivas y nebulosas cambiantes. Eta Carina, la estrella más energética en la nebulosa, era una de las estrellas más luminosas en el cielo de 1830, pero desde entonces ha decaído rápidamente. La Nebulosa del Ojo de la cerradura (Keyhole), visible cerca del centro, aloja algunas de las estrellas más masivas conocidas, que también han cambiado su apariencia. La Nebulosa de Carina se extiende por unos 300 años-luz y se encuentra a unos 7.000 años-luz de nosotros, en la constelación de Carina. En la última década, Eta Carina ha emitido grandes destellos de luz e incluso podría explotar como una supernova dentro de los próximos mil años.”
Está claro que, en estas explicaciones no se profundiza ni se explican cuestiones de alto interés científico, como por ejemplo, los resultados que la Astrofísica, esa relativamente nueva rama de la física, puede obtener investigando lugares como este de la Nebulosa Carina en la que, se producen sucesos que nos facilita ampliar conocimientos al estudiar los sucesos que ahí ocurren y las reacciones físicas que se producen para generar energía y síntesis de nuevos elementos químicos en el Universo.
Feb
15
¡La Ciencia! y su divulgación (difícil tarea) ¡¡DEBATE!!
por Emilio Silvera ~ Clasificado en Debates ~ Comments (29)
Existen Blog o páginas que podemos visitar en Internet que son muy buenos transmisores de los acontecimientos científicos que surgen en las distintas disciplinas del saber humano, y, sobre todo, sobresalen las noticias experimentos y observaciones en Física, Química, Biología y Astronomía.
Busco por curiosidad y, en un blog que curioso, se hizo las mismas preguntas que yo me estoy haciendo ahora, encuentro que ha elaborado (previa búsqueda por la Red de Internet) un Ranking de éstos Blogs y, como suponía, los que resultaron más populares ocupan puestos muy alejados de los primeros, ya que, la Ciencia, interesa a grupos de personas interesadas en saber y, por desgracia, no son tantas como sería deseable.
Así queda expuesto por…
Biología Computacional, que elaboró, tras su investigación, la lista siguiente:
- Pharyngula (posición 179 en el ranking global de Technorati)
- The Panda’s Thumb (posición 1647)
- RealClimate (posición 1884)
- Cosmic Variance (posición 2174)
- The Scientific Activist (posición 3429)
Feb
14
Hicimos un largo recorrido y nos queda otro, aún mayor
por Emilio Silvera ~ Clasificado en La Mente - Filosofía ~ Comments (4)
Casi todas las enfermedades que nos aquejan están y tienen su origen en los genes, otras dolencias, están relacionadas con el entorno en el que vivimos, la forma de vida elegida por nosotros mismos (tabaco, alcohol, droga, etc.), y una parte de los trastornos que padecemos (los más difíciles de curar), están situados en nuestras mentes, las más desconocidas.
Así que, si el conocimiento sobre el genoma está en el buen camino y, según todos los indicios, algún día, podremos tener las respuestas que aún nos falta, el problema más serio está en ese gran desconocido que llamamos cerebro y que es el responsable de dirigir y ordenar todos y cada uno de los movimientos que se generan en el resto de nuestro cuerpo. Allí arriba está la central eléctrica que lo pone todo en marcha. ¿Pero de qué mecanismos se vale? Precisamente esa es la explicación que nadie ha podido dar.
Pero todo evoluciona con el tiempo que transcurre, todo va cambiando (nuestros conocimientos también).
Hace unos veinte millones de años, durante el Mioceno, la Tierra vivió unas condiciones climáticas paradisíacas. Los casquetes polares, con una emplazamiento distinto del actual, apenas eran una pequeñas manchas de hielo; el nivel de los mares era mucho más elevado que en la actualidad, y la mayor parte de los lugares que ahora ocupan las ciudades y las playas en las que pasamos las vacaciones estaban cubiertos por los océanos. El agua del mar era como la que hoy podemos encontrar en los trópicos. El mundo de finales del Mioceno era, por lo tanto, un mundo muy diferente del nuestro: con distintos olores, con extraños sonidos y ni siquiera el cielo de hace veinte millones de años era parecido al que hoy podemos contemplar en una noche cualquiera. Las constelaciones de estrellas eran de otras formas y mostraban configuraciones distintas de las que ahora están allá arriba. Muchas de las estrellas que hoy admiramos en las noches de cielo despejado aún no habían aparecido y otras que entonces brillaban ya no existen.
Feb
14
Los objetos supermasivos
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Continuemos con los objetos supermasivos y, tras el agujero negro, el más cercano en densidad es una estrella de neutrones. Objeto extremadamente pequeño y denso que se forma cuando una estrella masiva, de 1’5 a 2 masas solares, al finalizar la fusión, sufre una explosión de supernova de tipo II. Durante la explosión, el núcleo de la estrella masiva se colapsa bajo su propia gravedad hasta que, a una densidad de unos 1017 Kg/m3, los electrones y los protones están tan juntos que pueden combinarse para formar neutrones. El objeto resultante consiste sólo en neutrones; se mantiene estable frente a un mayor colapso gravitacional por la presión de degeneración de los neutrones, siempre que su masa no sea mayor que dos masas solares (límite de Oppenheimer-Volkoff). Si el objeto fuese más masivo colapsaría hasta formar un agujero negro.
Una típica estrella de neutrones, con una masa poco mayor que la del Sol, tendría un diámetro de solo unos 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humanidad.
Cuanto mayor es la masa de una estrella de neutrones, menor es su diámetro. Se cree que las estrellas de neutrones tienen un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeados por una corteza sólida de más o menos 1 Km de grosor compuesta por elementos como el hierro.
Los púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensa que contienen estrellas de neutrones.