Mar
29
¡Perelman! El Espíritu misterioso
por Emilio Silvera ~ Clasificado en Matemáticas ~ Comments (18)
Grigori Perelmán
Os voy a contar ahora la fabulosa historia de Grigori “Grisha” Yákovlevich Perelmán sin duda alguna el mas genial matemático de nuestro tiempo (extraigo la mayor parte de los datos de nuestra amiga Wiki). Nació el 13 de junio de 1966 en Leningrado, URSS (ahora San Petersburgo, Rusia), ha hecho históricas contribuciones a la geometría riemanniana y a la topología geométrica. En particular, ha demostrado la conjetura de geometrización de Thurston, con lo que se ha logrado resolver, afirmativamente, la famosa conjetura de Poincaré, propuesta en 1904 y considerada uno de los problemas abiertos más importantes y difíciles en matemáticas.
Mar
29
Perelman, ¡extraño personaje!
por Emilio Silvera ~ Clasificado en Matemáticas ~ Comments (0)
Recordemos aquí de nuevo que, precisamente ahora, un siglo más tarde, en el Congreso Internacional de Matemáticas celebrado en Madrid el mes de Agosto de 2006, se otorgó la Medalla Field (una especie de Nobel de las matemáticas) al matemático ruso Perelman, extraño ser que no ha comparecido a la cita y la ha rechazado. Perelman (aunque muchos lo intentaron sin conseguirlo), ha resuelto la conjetura expuesta por Poincaré y planteada en 1904.
La conjetura de Poincaré de 1904, en el año 2.000, fue catalogada por el Instituto Planck como uno de los siete problemas del milenio. Para hacer un comentario sobre esta conjetura tengo que referirme a la topología, el nivel de las matemáticas donde está ubicada.
La topología es la geometría de los objetos elásticos o flexibles que cambian de forma pero tienen las mismas propiedades que antes de ser estirados, achatados, etc. Se pueden retorcer pero no cortar ni pegar.
Los topólogos no tienen en cuenta la distancia, puesto que se puede variar al deformar el objeto, sino nociones más sutiles. Los orígenes de la topología se remontan a mediados del siglo XVIII, con los trabajos de Euler en teoría de grafos, que llamó “análisis situs”.
A finales del siglo XIX y principios del siglo XX, la topología recibió un gran impulso con los trabajos de Poincaré, matemático francés muy influyente en el posterior desarrollo de diversas áreas de las matemáticas y de la física. En particular, en 1904 planteó la conjetura que lleva su nombre y que no se ha resuelto hasta el siglo XXI. Este problema ha sido un motor para la investigación en topología de todo el siglo pasado y se ha llegado a su resolución con ideas nuevas y apasionantes.
Para situarnos mejor debemos hablar de las variedades, espacios que tienen una dimensión determinada. Por ejemplo una recta o un circulo son variedades de dimensión uno, puesto que se describen como un parámetro. El plano o la esfera son ejemplos de variedades bidimensionales, al utilizar dos parámetros para describir sus posiciones. El espacio en que vivimos es una variedad tridimensional, y si le añadimos la dimensión temporal, el espacio-tiempo es una variedad de dimensión cuatro. Ya he comentado en otros trabajos cómo las singularidades geométricas, las variedades, fueron introducidas por Riemann a mediados del s. XIX y constituyeron una herramienta clave para la física del siglo XX. De hecho, la teoría de la relatividad especial de Einstein fue postulada por Einstein en 1.905, pero hasta que no incorporó las variedades contenidas en el tensor métrico de Riemann, no pudo completar la teoría de la relatividad general que incluía los espacios curvos.