Mar
23
¡Esos pueblos del mundo!
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (13)
Me maravilla la riqueza que atesoramos y la experiencia que la Humanidad ha podido tener a lo largo y a lo ancho de sus milenarias vivencias sobre este planeta. Civilizaciones que fueron nos dejaron la huella de su paso por el mundo y, de ellos, de sus comportamientos y formas de vivir, hemos podido saber como evolucionó la especie humana a lo largo y ancho de los los tiempos.
Mi debilidad está en leer y enterarme de las cosas, sin límite de cuestiones a tratar, aunque sí con preferencias. Lo he tocado todo de manera más o menos profunda, y una vez pude leer (no recuerdo ahora dónde) que la mitología y los escritos antiguos nos hacen saber que el último día de la Atlántida se vio marcado por una inmensa catástrofe. Olas tan altas como montañas, huracanes, explosiones volcánicas… sacudieron el planeta entero. La civilización sufrió un retroceso y la Humanidad superviviente quedó reducida a un estado de barbarie.
Las tablas sumerias de Gilgamés hablan de Utnapichtiun, primer antepasado de la Humanidad actual, que fue, con su familia, el único superviviente de un inmenso diluvio. Encontró refugio en un arca para sus parientes, para animales y pájaros. El relato bíblico del Arca de Noé parece ser una versión tardía de esa misma historia.
El Zend-Avesta iranio nos proporciona otro relato de la misma leyenda del diluvio. El dios Ahuramazda ordenó a Yima, patriarca persa, que se preparara para el diluvio. Yima abrió una cueva, donde durante la inundación, fueron encerrados los animales y las plantas necesarias para los hombres. Así fue como pudo renacer la civilización después de las destrucciones ocasionadas por el diluvio.
El Mahabharata de los hindúes cuenta cómo Brahma apareció bajo la forma de un pez ante Manú, padre de la raza humana, para prevenirle de la inminencia del diluvio. Le aconsejó construir una nave y embarcar en ella “a los siete Rishis” (sabios) y todas las distintas semillas enumeradas por los brahamanes más antiguos y conservarlas cuidadosamente.
Mar
18
CIENCIAS DE LA TIERRA Y DEL MEDIO AMBIENTE
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (3)
La energía nuclear procede de reacciones de fisión o fusión de átomos en las que se liberan gigantescas cantidades de energía que se usan para producir electricidad.
En 1956 se puso en marcha, en Inglaterra, la primera planta nuclear generadora de electricidad para uso comercial. En 1990 había 420 reactores nucleares comerciales en 25 países que producían el 17% de la electricidad del mundo.
En los años cincuenta y sesenta esta forma de generar energía fue acogida con entusiasmo, dado el poco combustible que consumía (con un solo kilo de uranio se podía producir tanta energía como con 1000 toneladas de carbón). Pero ya en la década de los 70 y especialmente en la de los 80 cada vez hubo más voces que alertaron sobre los peligros de la radiación, sobre todo en caso de accidentes. El riesgo de accidente grave en una central nuclear bien construida y manejada es muy bajo, pero algunos de estos accidentes, especialmente el de Chernobyl (1986) que sucedió en una central de la URSS construida con muy deficientes medidas de seguridad y sometida a unos riesgos de funcionamiento alocados, han hecho que en muchos países la opinión pública mayoritariamente se haya opuesto a la continuación o ampliación de los programas nucleares. Además ha surgido otro problema de difícil solución: el del almacenamiento de los residuos nucleares de alta actividad.
Obtención de energía por fisión nuclear convencional.
El sistema más usado para generar energía nuclear utiliza el uranio como combustible. En concreto se usa el isótopo 235 del uranio que es sometido a fisión nuclear en los reactores. En este proceso el núcleo del átomo de uranio (U-235) es bombardeado por neutrones y se rompe originándose dos átomos de un tamaño aproximadamente mitad del de uranio y liberándose dos o tres neutrones que inciden sobre átomos de U-235 vecinos, que vuelven a romperse, originándose una reacción en cadena.
Mar
18
Las partículas y sus familias
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
- Introducción histórica.
El interés por descubrir la constitución interna de la materia se remonta a los filósofos griegos. De entre ellos, los primeros que creyeron en una organización interna fueron Leucipo y Demócrito, que postularon una estructura basada en la existencia de átomos (“sin partes” en griego). La hipótesis de de estos filósofos se abandonó hasta que a principios del siglo XIX fue recuperada por John Dalton, con el establecimiento de su teoría atómica. En ella Dalton postulaba que la materia estaba formada por partículas pequeñas denominadas átomos, que éstas eran indivisibles e indestructibles, que todos los átomos de un elemento eran iguales entre sí y diferentes de los átomos de los demás elementos y que los átomos se unían entre sí para formar compuestos químicos.
Con el desarrollo de la electricidad en el siglo XIX se vio que era imposible admitir que los átomos fuesen las partículas últimas de la materia. Así, el estudio de las descargas eléctricas en gases, y en particular sobre los rayos catódicos, llevó a J.J. Thomson en 1897 a descubrir el electrón (partícula con carga negativa) y medir su relación carga/masa. El propio Thomson propuso un modelo atómico que incluía la presencia del electrón dentro del átomo. Al mismo tiempo que Thomson realizaba sus estudios sobre el electrón Eugen Goldstein descubre los denominados rayos canales (con carga positiva) y posteriormente Rutherford propone denominar protón a la partícula positiva generada a partir del hidrógeno, con lo que se completaba la existencia de dos partículas fundamentales cada una con un tipo de carga. El protón tenía la misma carga del electrón y una masa mucho mayor. Rutherford propone un modelo atómico nuclear, con una zona central denominada núcleo, que contiene la carga positiva y la casi totalidad de la masa del átomo y una corteza orbital, en la que se encuentran los electrones. Fija el tamaño del núcleo como más de 10.000 veces el del átomo. También, a principios del siglo XX se postula la existencia del neutrón, ligeramente más masivo que el protón y desprovisto de carga eléctrica. Su existencia fue confirmada en 1932.
Mar
15
Sobre elementos químicos
por Emilio Silvera ~ Clasificado en Química ~ Comments (0)
Tomado de la revista mensual que publica el “Ilustre Colegio Oficial de Doctores y Licenciados en Filosofía y Letras y en Ciencias.” Firmado por Ignacio F. Bayo (periodista científico). Título original: “El nuevo elemento químico 114 se acerca a la isla de estabilidad.”
Uno de los descubrimientos más sorprendentes de la historia es el haber podido descifrar la composición de las estrellas y de la materia interestelar sin salir de la Tierra. Resulta tranquilizador saber que todo el cosmos está hecho con los mismos elementos que nosotros mismos y las cosas que nos rodean, aunque existe una pequeña diferencia: El hombre ha sido capaz de fabricar una veintena de elementos que la naturaleza no parece haber logrado y ha extendido la tabla periódica por medios artificiales.
El átomo más pesado que haya existido en la Tierra, y probablemente en el Universo, tiene una masa atómica de 289 (114 protones y 175 neutrones en su núcleo), superando ampliamente la del elemento 112 (277), el más pesado hasta ahora, y en cerca de un 50 por 100 a la de un átomo de plomo. Fue creado en diciembre pasado en el Instituto de Investigación Nuclear de Dubna (Rusia), por un equipo de investigadores rusos y estadounidenses, liderado por Yuri Oganessian, tras cuatro meses de experimentos.
Los 30 segundos de vida que tuvo el nuevo átomo parecen confirmar la existencia de una «isla de estabilidad» en las inmediaciones de los elementos 114 o ll5. Aunque 30 segundos puedan parecer un periodo demasiado corto de tiempo, hay que tener en cuenta que los elementos inmediatamente anteriores apenas sobreviven unas milésimas de segundo, siendo el 111 el más fugaz, ya que su vida media es de sólo 1,5 milisegundos. De hecho, todos los elementos transuránidos, que son los que ocupan los puestos 93 en adelante, son inestables y se desintegran en periodos de tiempo cada vez más cortos, y a partir del 107 ninguno supera el segundo. De ahí la esperanza que suscita entre los físicos nucleares el hallazgo, que aún debe ser confirmado.
Mar
14
¿De Branas? ¿Más dimensiones? ¿Qué Universo es ése?
por Emilio Silvera ~ Clasificado en Física ~ Comments (1)
¿Qué son las D-branas? ¿Por qué las requiere la teoría de cuerdas? La respuesta básica a la segunda pregunta es que dan sentido a las cuerdas abiertas que intervienen en la teoría tipo I: cada uno de los dos extremos de una cuerda abierta debe residir en una D-brana. Pero dos extremos de la cuerda abierta residen en un subespacio (q + 1)-dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de supersimetría), que representa una solución de la teoría de supergravedad 11 dimensional.
En respuesta a la primera pregunta, una D-brana es una estructura de género tiempo, como más arriba indico, 1 + q dimensiones espaciotemporales. Invocando una de las dualidades de la teoría M, alternativamente podemos considerar una D-brana como una solución de las ecuaciones de alguna otra versión de la teoría M de cuerdas.
Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros). Suelen tratarse como si fueran objetos clásicos que yacen dentro del espacio-tiempo completo 1 + 9 (o 1 + 10) dimensiones. La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Peter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1805 y 1859).
Con la introducción de tales D-branas, varios teóricos han expresado una “filosofía de cuerdas” que parece representar un profundo cambio respecto a lo anterior. En efecto, se afirma con cierta frecuencia que podríamos “vivir en” esta o esa D-brana, lo que significa que nuestro espacio-tiempo percibido podría yacer realmente dentro de un D-brana, de modo que la razón de que no se perciban ciertas “dimensiones extra” se explicaría por el hecho de “nuestra” D-brana no se extiende a esas dimensiones extra.
La última posibilidad sería la postura más económica, por supuesto, de modo que “nuestra” D-brana (una D-3-brana) sería de 1 + 3 dimensiones. Esto no elimina los grados de libertad en las dimensiones extra, pero los reduce drásticamente. ¿Por qué es así? Nuestra perspectiva ahora es que somos “conscientes” de los grados de libetad que están implicados en el interior profundo del espacio de mayores dimensiones entre las D-branas, y es en esto donde se está dejando sentir la excesiva libertad funcional.