May
14
Un poco de ¡Física! y ¡Astronomía!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Para la XIX Edición del
Estaba pensando escribir un poco sobre cuestiones generales de la Física, y, de pronto, sin saber el por qué, me vino a la memoria que, el deuterón resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P.Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituído por un protón y 2 neutrones. La reacción de planteó así:
Hidrógeno2 + Hidrógeno2 → Hidrógeno3 + Hidrógeno1
Este nuevo Hidrógeno superpesado se denomino “tritio” (del griego tritos “terceros”); su ebullición a 25’0 °K y su fusión, 20’5 °K.
Como con cierta frecuencia me pasa, me desvió del tema en un principio elegido y, sin poderlo evitar, mi ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo, un fugaz recuerdo, lo sigo y me lleva a destinos distintos de los que me propuse al comenzar, así, en este caso, me pasé a la química que, también me gusta mucho y está directamente relacionada con la física, de hecho son hermanas, la madre, las matemáticas, la única que, finalmente, lo podrá explicar todo.
Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra, o el Sol, o nuestra Galaxia o, si se me permite decirlo, como el propio Universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Estas, al girar, genera un minúsculo campo magnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nóbel de Física en 1.943 y 1.944, respectivamente, por sus trabajos sobre dicho fenómeno.
May
14
¡Los Humanos! ¿Sabrán controlar la tecnología?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Para la XIX Edición del
Pienso en un mundo mucho más avanzado, dentro de 500 ó 1.000 años. ¿Qué habrá pasado con los robots?, máquinas cada vez más perfectas que llegaron a autofabricarse y repararse. ¿Cómo evolucionarán a partir de esos procesadores inteligentes de la nanotecnología? ¿Llegarán algún día a pensar por sí mismos? Ahí puede estar uno de los grandes peligros de la Humanidad.
La invención del robot (del checo, robota, trabajo) se debe al esfuerzo de las sociedades humanas por liberarse de las labores más ingratas y penosas a que se ven obligados algunos de sus individuos. En un principio, la apariencia de los robots sólo atendía a las razones prácticas de las funciones que cada modelo tenía que desempeñar, o sea, su morfología estaba aconsejada por criterios funcionales y prácticos.
Una vez superada la primera fase, el hombre trata de fabricar robots que cada vez sean más semejantes a su creador, y aunque las primeras figuras han sido algo groseras y poco hábiles en sus movimientos, poco a poco se va perfeccionando la imitación de los humanos.
Un robot se diferencia fundamentalmente de una máquina por su capacidad para funcionar de modo automático sin la acción permanente del hombre. Los primeros robots se mostraron especialmente válidos para llevar a cabo aquellos trabajos sencillos y repetitivos que resultaban tediosos y pesados al hombre (al Ser Humano mejor). También son ideales para el trabajo en el que se está expuesto a cierto peligro o se trabaja con materiales peligrosos en lugares nocivos para los seres vivos.
Una de las condiciones esenciales que debe tener una máquina-robot para ser considerada como tal es la posibilidad de ser programada para hacer tareas diversas según las necesidades y la acción que de ellos se requieran en cada situación.
May
13
¿Que se habrá conseguido en el 3.011?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
May
13
¡LA FÍSICA!
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (2)
Para la XIX Edición del
Necesitaremos paciencia, mucha curiosidad que satisfacer y estar dispuesto a realizar el trabajo necesario. Cuando en 1.900, Max Planck, el físico alemán escribió un artículo sobre la radiación de cuerpo negro que él decía emitirse en paquetes discretos, no continuos, a los que llamó “cuantos”, nadie fue capaz de suponer que allí estaba la semilla de lo que más tarde se conocería como la Teoría de la Mecánica Cuántica que describía a la perfección el sistema matemático que nos descubrió el universo del átomo, de lo muy pequeño,lo infinitesimal. Por los años de 1.925 y 1.926, Edwin Schrödinger, Werner Heisemberg, Dirac, Feynman y otros muchos desarrollaron esta teoría que derribó las barreras de creencias firmemente asentadas durante siglos.
“Quienquiera que no se sienta conmocionado por la teoría cuántica no la comprende”
Niels Bohr
Aquello fue una auténtica revolución:
- Las fuerzas son creadas por el intercambio de paquetes discretos de energía denominados cuantos.
En contraste con la imagen geométrica de Einstein para una “fuerza”, en la teoría cuántica la luz iba a ser dividida en fragmentos minúsculos. Estos paquetes de luz fueron llamados fotones, y se comportaban de forma muy parecida a partículas puntuales. Cuando dos electrones chocan, se repelen mutuamente, no a causa de la curvatura del espacio, sino debido a que intercambian un paquete de energía, el fotón.
May
12
El 137, ese Número Puro y Adimensional
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
No tenemos que dejar de ser conscientes, ni por un momento, de la enorme ignorancia que soportamos, será el mejor camino para avanzar, partiendo de esa base de que no lo sabemos todo y de que son muchas las cosas que nos quedan por saber. De nuevo hoy, os traigo el ejemplo (para los que no lo conozcan) del número 137 y lo que significa.
Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.
Para poner un ejemplo de nuestra ignorancia poco tendríamos que buscar, tenemos a mano miles de millones.
Me acuerdo de León Lederman (premio Nobel de Física) que decía:
“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.
Y continuaba diciendo: Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck*. Tanta palabrería y numerología no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e–), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).
Lo más notable de este número es su dimensionalidad. La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo; la constante de Planck racionalizada, ћ, es h/2π = 1’054589×10 julios segundo; la altura de mi hijo, el peso de mi amigo, etc, todo viene con sus dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está solo: se escribe desnudo a donde va. Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la galaxia Andrómeda, aunque utilicen Dios sabe qué unidades para la carga del electrón y la velocidad de la luz y qué versión utilicen para la constante de Planck, también les saldrá el 137. Es un número puro. No lo inventaron los hombres. Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.
La física se ha devanado los sesos con el 137 durante décadas. Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.
¿Por qué alfa es igual a 1 partido por 137?
Esperemos que algún día aparezca alguien que, con la intuición, el talento y el ingenio de Galileo, Newton o Einstein, nos pueda por fin aclarar el misterioso número y las verdades que encierra. Menos perturbador sería que la relación de todos estos importantes conceptos (e–, h y c) hubieran resultado ser 1 ó 3 o un múltiplo de pi… pero ¿137?
Arnold Sommerfeld percibió que la velocidad de los electrones en el átomo de hidrógeno es una fracción considerable de la velocidad de la luz, así que había que tratarlos conforme a la teoría de la relatividad. Vio que donde la teoría de Bohr predecía una órbita, la nueva teoría predecía dos muy próximas.
Esto explica el desdoblamiento de las líneas. Al efectuar sus cálculos, Sommerfeld introdujo una “nueva abreviatura” de algunas constantes. Se trataba de 2πe2 / hc, que abrevió con la letra griega “α” (alfa). No prestéis atención a la ecuación. Lo interesante es esto: cuando se meten los números conocidos de la carga del electrón, e–, la constante de Planck, h, y la velocidad de la luz, c, sale α = 1/137. Otra vez 137 número puro.
Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del la vida del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales que, además, son importantes para la existencia de la vida tal como la conocemos, si la carga del electrón variara sólo en una diez millonésima, la vida no podría existir, y, que decir de la Gravedad o de la velocidad de la luz que, de ser diferentes, no estaríamos hablando de este Universo.