Feb
2
Comentar algo de Física
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Comentar algo de física
Posiblemente, el descubrimiento de las leyes de la mecánica cuántica habría requerido más de un cuarto de siglo se la propia naturaleza no hubiera ayudado “regalándonos” la simplicidad del átomo de hidrógeno. Su espectro tiene la regularidad necesaria que permitió a Bohr empezar a comprenderlo a partir de las embrionarias ideas de Planck y de Einstein (uno con su cuanto de acción, h – la radiación de cuerpo negro –, y el otro con su trabajo inspirado en el anterior, y que versó sobre el efecto fotoeléctrico).
Si el átomo más elemental no constituyera un sencillo sistema “integrable” de dos cuerpos, la complejidad de su espectro hubiera retrasado el progreso hacia la física cuántica. Lo mismo puede decirse de la sencillez del sistema sol-planeta y del descubrimiento de las leyes de Kepler, que facilitaron enormemente el posterior descubrimiento de Newton y de la Ley de la Gravitación Universal, y la génesis de la ciencia moderna.
Por el contrario, la unificación de la mecánica cuántica con la gravitación, uno de los retos científicos fundamentales, no parece, al menos por el momento, que esté agraciada con la misma suerte.
La escala natural en la que la gravedad y la física cuántica se mirarían de igual a igual, viene dada por la longitud de Planck, , pero ésta resulta ser extraordinariamente pequeña, del orden de 10-33 cm, o en términos de masa-energía, , 10-5 g aproximadamente, o Ep = Mpc2 ≈ 1019 GeV. Esta masa está muy por encima de las masas de las partículas elementales y la energía muy lejos de las energías que pueden alcanzarse en varias generaciones venideras de los aceleradores.
Feb
2
Gases “nobles”
por Emilio Silvera ~ Clasificado en Química ~ Comments (8)
Asimov nos contaba cosas de ciencia como si de una historia o aventura se tratara y, atraía la atención del lector que, de esa manera, aprendía sin casi darse cuenta. Veamos aquí un ejemplo:
“En alguna ocasión todos hemos oído mencionar la palabra “gases nobles”, y sin embargo no siempre sabemos lo que son y el por qué le llaman así.
Los elementos que reaccionan difícilmente o que no reaccionan en ab-soluto con otros elementos se denominan “inertes”. El nitrógeno y el platino son ejemplos de elementos inertes.
En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química. Estos nuevos gases (helio, neón, argón, kripton, xenón y radón) son más inertes que cualquier otro elemento y se agrupan bajo el nombre de gases inertes.
Los elementos inertes reciben a veces el calificativo de “nobles” porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplos de “metales nobles”, y por la misma razón se llaman a veces “gases nobles” a los gases inertes. Hasta 1.962, el nombre más común era el de gases inertes, quizá porque lo de nobles parecía poco apropiados en sociedades democráticas.
La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene 8 electrones. Así la distribución electrónica del neón es (2,8) y la del argón (2,8,8). Como la adición o sustracción de electrones rompe esta distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no pueden producirse reacciones químicas y que estos elementos son inertes.
Feb
2
Sobre dimensiones más altas y otras cuestiones
por Emilio Silvera ~ Clasificado en Física Relativista ~ Comments (3)
En un trabajo anterior de estos días finalizaba con los párrafosa que hoy comienzo y, continúo con el tema hasta cotas más lejanas y diversas. Veámos:
El mensajero de la cuarta dimensión, un pintoresco matemático inglés llamado Charles Howard Hinton que atravesó el Atlántico y la llevó a Norteamérica, formó bastante ruido a cuenta de la cuarta dimensión y se presentaba como experto en ella; tenía respuesta para cualquier pregunta.
Si le preguntaban ¿dónde está la cuarta dimensión?, su respuesta era invariable: “Está aquí, con nosotros, pero es tan pequeña que no la podemos ver“.
Básicamente, la respuesta de Hinton fue la misma que después dieron Kaluza y Klein para su quinta dimensión (la famosa teoría que unía el electromagnetismo de Maxwell y la gravedad de Einstein mediante la ocurrencia de elevar la teoría einsteniana en una dimensión más) y las que han dado otros físicos y matemáticos para explicar las teorías decadimensionales. En todas, cuando nació el tiempo y el espacio, en el Big Bang, resultó que tres dimensiones espaciales y una de tiempo se expandieron con el universo; las otras dimensiones se quedaron compactados en minúsculos círculos en la longitud de Planck, es decir una distancia de 10-33 cm que se formula mediante , donde G, es la constante gravitacional de Newton, ħ es la constante de Planck racionalizada, y c es la velocidad de la luz en el vacío. Esa es una distancia que, hoy por hoy, nuestros aparatos tecnológicos (microscópicos electrónicos, etc), no están capacitados para alcanzar.
Feb
2
Sobre la Teoría de Einstein y otras cuestiones
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (3)
La teoría de Einstein goza de una amplia aceptación debido a los aciertos macroscópicos que han sido verificados de manera experimental. Los más recientes están referidos a los cambios de frecuencia de radiación en púlsares binarios debido a la emisión de ondas gravitacionales, que actualmente estudia Kip S. Thorne, en relación a los agujeros negros. Entre las predicciones que Einstein propugna en su teoría se encuentran, por ejemplo, la existencia de ondas gravitacionales, que el universo está en constante expansión y que, por lo tanto, tuvo un inicio: el Big Bang o los agujeros negros.
Se trata de regiones donde la gravedad es tan intensa que ni siquiera la luz puede escapar de su atracción. Estas regiones se forman por el colapso gravitatorio de estrellas masivas en la etapa final de su existencia como estrella, acabado el combustible nuclear y no pudiendo fusionar hidrógeno en helio, fusiona helio en carbono, después carbono en neón, más tarde neón en magnesio y así sucesivamente hasta llegar a elementos más complejos que no se fusionan, lo que produce la última resistencia de la estrella contra la fuerza de gravedad que trata de comprimirla, se degeneran los neutrones como último recurso hasta que, finalmente, la estrella explota en supernova lanzando al espacio las capaz exteriores de su material en un inmenso fogonazo de luz; el equilibrio queda roto, la fuerza de expansión que contrarrestaba a la fuerza de gravedad no existe, así que, sin nada que se oponga la enorme masa de la estrella supermasiva, se contrae bajo su propio peso, implosiona hacia el núcleo, se reduce más y más, su densidad aumenta hasta lo inimaginable, su fuerza gravitatoria crece y crece, hasta que se convierte en una singularidad, un lugar en el que dejan de existir el tiempo y el espacio.
Allí no queda nada, ha nacido un agujero negro y a su alrededor nace lo que se ha dado en llamar el Horizonte de Sucesos, que es una región del espacio, alrededor del agujero negro que una vez traspasada no se podrá regresar; cualquier objeto que pase esta línea mortal, será literalmente engullida por la singularidad del agujero negro. De hecho, el telescopio espacial Hubble, ha enviado imágenes captadas cerca de Sagitario X-1, en el centro de nuestra galaxia, donde reside un descomunal agujero negro que, en las fotos enviadas por el telescopio, aparece como atrapa la materia de una estrella cercana y se la engulle.
Feb
2
Todas las cosas son: Todo… ¡átomos!
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (2)
El mismo acto de explorar modifica la perspectiva del que explora; Ulises, Piteas, Marco Polo y Colón, habían cambiado cuando volvieron a su hogar después de explorar “nuevos mundos”. Lo mismo ha sucedido con la investigación científica de los extremos en las escalas, desde la inmensa y grandiosa extensión de los espacios cosmológicos hasta el minúsculo mundo enloquecido de las partículas subatómicas. Estos viajes nos han cambiado y, han desafiado muchas de las concepciones científicas y filosóficas que conformaban nuestra manera de ver el mundo que nos rodea.
La exploración del ámbito de las Galaxias extendió el alcance de la visión humana en un factor de 10²⁶ veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquialismo en un Universo más vasto donde el espacio es curvo y el tiempo se hace flexible, dónde la materia es energía congelada y, donde el tiempo está unido irremisiblemente al espacio.
La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la Física Cuántica que surgió a partir de la semilla que sembró Max Planck, en 1900, cuando comprendió que sólo podía explicar lo que se llamaba curva del cuerpo negro –el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de energía es continua, y lo reemplazó por la hipótesis sin precedentes de que la energía se emite en unidades discretas que Planck llamó cuantos, derivada de la palabra grecolatina similar, y los definió en términos del cuanto de acción, simbolizado por la letra h. Planck no era ningún revolucionario –a la edad de 40 años era un viejo, juzgado por los patrones de la ciencia matemática y, además, un pilar de la elevada cultura alemana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que se había dedicado durante muchos años su carrera. “Cuanto mayores sean sus dificultades –escribió-…tanto más importante será finalmente para la ampliación y profundización de nuestro conocimiento en la física.” Sus palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de jabón, la física cuántica pronto se expandió prácticamente a todo el ámbito de la física, y el cuanto de acción de Planc, h, llegó a ser considerado una constante de la Naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.