jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Podremos llegar a conocer nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“En Cosmología, las condiciones  “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”

El tiempo de Planck es una unidad de tiempo considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

t_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.39124(27) × 10−43 segundos

Llegados a este punto, me remito al párrafo primero del comentario de hoy, en él se deja claro que, nada sabemos de ese instante primero anterior al Tp. Queé habría allí entonces, qué sustancias dieron lugar a la materia y, de dónde salieron las fuerzas fundamentales.


 

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.

 

La mayoría de los cosmólogos interpretan esta “singularidad” como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

Es posible que bajo el Sol no encontremos nada nuevo; sin embargo, el estudio del cosmos ha sido y lo continúa siendo una apabullante caja de sorpresas. Hasta los años 20, los científicos preferían creer que el espacio era infinito y eterno. Se coincidía en la vaga noción de que éramos únicos en un universo hueco e insondable. Pero, como ya lo hemos mencionado en trabajos precedentes, la historia empieza a cambiar cuando el matemático ruso Alexander Friedmann en 1922, desafiando las afirmaciones de Albert Einstein de que el universo era estático, publicó un ensayo en el cual demostraba un error en los cálculos de Einstein y que las propias ecuaciones de éste permitían la descripción de un universo que evoluciona. En 1927 el sacerdote belga y físico teórico George Lemaître aprecia los estudios de Friedmann y galvanizó a los cosmólogos con su propuesta de que un «átomo primigenio», denso y muy caliente estalló en forma similar a la bola de fuego del Big Bang para crear el actual universo. En los años ’20, el astrónomo Edwin Hubble y otros colegas suyos con sus observaciones demostraron que el universo se estaba expandiendo; todas las galaxias se alejaban unas de otras, incrementando el espacio entre ellas y sus vecinas.

Aunque Lemaître, «el padre de la teoría del Big Bang», diese el primer paso, su versión moderna se debe a George Gamow y a sus alumnos Ralph Alpher y Robert Herman. En los años ’40, calcularon la síntesis de los elementos químicos de la explosión primordial y, al hacerlo, trasladaron la idea del Big Bang del campo de las hipótesis al terreno de la ciencia de observación. Alpher y Herman estimaron que el espacio debería estar actualmente bañado por un mar de energía electromagnética que, en términos del cuerpo negro, estimaron que ésta debía bordear los 5° K por encima del cero absoluto, lo que informaron en una carta enviada a la revista científica Nature en 1948. La estimación sobre la existencia de la energía electromagnética quedó confirmada cuando, dieciocho años después, Penzias y Wilson lograron identificarla, calculando que esta comportaba una temperatura de 2,7°K.

Leer más