domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Sabremos algún día quiénes somos y, hacia dónde vamos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                      ¿No habremos tomado el camino hacia ninguna parte?

¿Dónde estaríamos nosotros cuando se pusieron los cimientos de la Tierra? Eso, ni más ni manos, me preguntó un día alguien en un coloquio sobre el Universo,  La Tierra y la Vida. Claro que, no podía ni sabía contestar, ya que, por aquel entonces, nosotros, sencillamente, ¡no estábamos!

Y, lo único que se me ocurrió decir fue: Bueno, hombre, no exactamente nosotros que llegamos muchísimo más tarde, pero, lo cierto es que, los materiales que nos pudieron conformar, estaban en aquella nebulosa con la que regó el esapcio interestelar una supernova hace ahora miles de millones de años. Después, el Tiempo hizo posible que surgiera el Sol y, a su alrededor los planetas y lunas del Sistema Solar, y, con la ayuda de lo que hemos llamado evolución y los ingredientes precisos de atmósfera, agua, radioactividad y otros parámetros necesarios, surgío aquella primera célula replicante que lo comenzí todo, es decir, la aventura de la Vida.

            Una Tierra ignea, incandescente, sin vida

Todas aquellas explicaciones, de ninguna manera convencieron al curioso que formuló la pregunta, sin embargo, otra no tenía y así, de momento, quedaron las cosas. Ya me gustaría a mí saber para poder contestar a todas las preguntas que me hacen.

La especulación sobre el origen del Universo es una vieja y destacada actividad humana. Vieja por el simple hecho de que, la especie humana, no tiene ningún certificado de nacimiento y, tal desconocimiento de sus orígenes, les hace ser curiosos, deseosos de saber el por qué están aquí y como pudo suceder su venida. Estamos obligados a investigar nuestros orígenes nosotros sólos, sin la ayuda de nadie, es el caso que, ningún ser inteligente nos puede contar lo que pasó y, siendo así, nos vemos abocados a tener que hurgar en el pasado y valernos de mil ingeniosos sistemas para tatar de saber. Así que, si investigamos sobre el mundo del que formamos parte, esas pesquisas terminarán por decirnos más, sobre nosotros mismos que sobre el universo que pretendemos describir. En realidad, todos esos pensamientos, que no pocas veces mezclan lo imaginario con la realidad, todo eso, en cierta medida, son proyecciones psicológicas, esquemas proyectados por nuestras mentes sobre el cielo, como sombras danzantes de un fuego fatuo que no siempre nos transmite algún mensaje.

Aquellos mitos de la creación precientíficos dependían en su supervivencia menos de su acuerdo con los datos de la observación (de los que, de todos modos había pocos) que del grado en que eran satisfactorios, o tranquilizantes  o poéticamente atractivos. Aficionados a ellos puesto que eran nuestros, esos cuentos poníann de relieve lo que más importaba a las sociedades que los conservaban. Los sumerios vivían en una concljuencia de ríos, y, concebían la creación como una lucha en el barro entre dos dioses. Los mayas, obsesionados por los juegos de balón, conjeturaban que su creador se transformaba en balón cada vez que planeta Venus desaparecía detrás del Sol. El pescador tahitiano, hablaba de un dios pescador que arrastro sus islas desde el fondo del océano. Los espadachines japoneses formaron sus islas de gotas de sangre que caían de una espada cósmica. Para los griegos amantes de la lógica, la creación fue obra de los elementos: Para Tales de Mileto, el universo originalmente fue Agua; para Anaxímedes, fue Aire; para Heráclito, Fuego…Todos los pueblos tenían su propia génesis… Y, ¿cuál será la nuestra?

En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo. ¿Qué pasó en ese brevísimo intervalo de tiempo? Nadie lo sabe. Pero, a pesar de ello, nosotros pretendemos saber cómo comenzamos nuestra andadura en este mundo que, en realidad, comenzó en otro lugar muy lejano y muy caliente.

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.

Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.

Hablaremos ahora del Big Bang (lo único que tenemos para agarrarnos a lo que “parece quen fue”), esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos. De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.

 

 

La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la realtividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

El Tiempo de Planck es una unidad de tiempo considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el Tiempo de Planck representa el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 t_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.39124(27) × 10−43 segundos

La Era de planck: Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang.  Este hecho marcó el comienzo de la era de la materia.

 

La materia salió de ese clima de enormes temperaturas ahora inimaginables y, durante varias etapas o eras (de la radiación, de la materia, hadrónica y bariónica… llegamos al momento presente habiendo descubierto muchos de los secretos que, el Universo guardaba celosamente para que, nosotros, los pudiéramos desvelar.

De la radiación

 

 

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang… Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.

La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.

Era hadrónica

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones, kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

Era Leptónica

Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones  se unieron a los hadrónes para formar átomos.

El universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein-de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

En 1932 Einstein y de Sitter propusieron que la constante cosmológica debe tomar valor cero, y construyeron un modelo cosmológico homogéneo e isótropo que representa el caso intermedio entre los modelos abierto y cerrado de Friedmann. Einstein y de Sitter supusieron que la curvatura espacial del Universo no es ni positiva ni negativa, sino nula.

La geometría espacial de este modelo es por lo tanto la geometría plana de Euclides; sin embargo el espacio-tiempo en su conjunto no es plano: hay curvatura en la dirección temporal. El tiempo comienza también en una Gran Explosión y las galaxias se alejan continuamente entre sí, sin embargo la velocidad de recesión (constante de Hubble) disminuye asintóticamente a cero a medida que el tiempo avanza.

Debido a que la geometría del espacio y las propiedades de la evolución del Universo están unívocamente definidas en el modelo de Einstein-de Sitter, mucha gente lo considera el modelo más apropiado para describir el Universo real.

Durante los últimos años de la década de los 70 surgió un firme soporte teórico para esta idea a partir de los estudios en física de partículas. Además, las observaciones experimentales sobre la densidad media del Universo apoyan esta concepción, aunque las evidencias aún no son concluyentes.

Todo esto está muy bien pero…

¡Si supiera contestar esa pregunta!

emilio silvera