Oct
10
La Materia, el “Vacío”, ¿otras Dimensiones?, la singularidad.
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (21)
Tiene y encierra tantos misterios la materia que estamos aún a años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.
El torio se presenta en la Naturaleza básicamente como un único isótopo Th-232, en un 100%.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).
Oct
10
¡Simetría! Una guía para descubrir
por Emilio Silvera ~ Clasificado en Simetrías ~ Comments (5)
La simetría esférica del planeta Marte
La simetría es una propiedad universal tanto en la vida corriente, desde un punto de vista matemático como desde el quehacer de la Física Teórica. En realidad, lo que observamos en la vida corriente es siempre lo repetitivo, lo simétrico, lo que se puede relacionar entre sí por tener algo común.
En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos esta concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más.
Cuando miro en mi diccionario de Física la palabra Simetría, lo que me dice es: “Conjunto de invariancias de un sistema. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas. Las simetrías pueden ser discretas (es decir, cuando hay un número finito de transformaciones de simetría), como el conjunto de rotaciones de una molécula octaédrica, o continuas (es decir, cuando no hay número finito), como el conjunto de rotaciones de un átomo o núcleo. Existen simetrías más generales y abstractas, como la invariancia CTP y las simetrías asociadas a las teorías gauge.”
También podemos hablar de simetría rota y de supersimetrías. Durante los últimos tiempos, los Físicos han elevado los principios de simetría al más alto nivel en la escala de lo que podemos entender por una explicación. Cuando encontramos una Ley propuesta de la Naturaleza, una pregunta se nos viene a la mente: ¿por qué esta ley? ¿Por qué la realatividad especial y la general? ¿Por qué el electromagnetismo de Maxwell? ¿Por qué las teorías de Yang-Mills de las fuerzas nucleares fuerte y débil? Claro que, una respuesta de importancia es que, las teorías hacen predicciones que han sido repetidamente conformadas con precisos experimentos, con diversidad de científicos y lugares y que, siempre, en todos los casos, dieron el mismo resultado. Esto, por supuesto, es la base de la confianza esencial que los físicos tienen en esas teorías.
Claro que, se deja fuera algo esencial: Los físicos creen también que están en el camino correcto porque, de algún modo que no pueden explicar, tienen la convicción de que son correctas, y las ideas de simetría son esenciales para esa intuición. Se presiente que es correcto que ningún lugar del Universo es especial comparado con cualquier otro lugar del Universo, así que los físicos tienen la confianza de que la simetría de traslación debería estar entre las simetrías de las leyes de la Naturaleza. Se presiente que es correcto que ningún movimiento a velocidad constante es especial comparado con cualquier otro. De modo que los físicos tienen confianza en que la relatividad especial, al abrazar plenamente la simetría entre todos los observadores con velocidad constante, es una parte esencial de las leyes de la Naturaleza.
Los hongos atómicos también guardan cierta simetría
Así que las simetrías de la Naturaleza no son meras consecuencias de las leyes de la Naturaleza. Desde nuestra perspectiva moderna, las simetrías son la base de la que manan las leyes y, siendo así (que lo es), cuando un físico observa una simetría, agudiza su atención, ya que, allí, en aquel lugar, podría encontrarse alguna ley de la Naturaleza que siguiendo aquella presencia, se podría descubrir.
Más allá de su papel en dar forma a las leyes que gobiernan las fuerzas de la Naturaleza, las ideas de simetría son vitales para el propio concepto del tiempo. Nadie ha sabido encontrar todavía definición fundamental y definitiva del tiempo. Sin embargo, es indudable que el papel del tiempo en la constitución del cosmos es llevar una especie de registro de los sucesos y acontecimientos que en el universo ocureren: Nace una estrella, se forma una nueva galaxia, explota una supernova, muere una estrella masiva y surge un agujero negro…
Reconocemos el transcurrir del tiempo al mirar y ver que, las cosas, no son iguales hoy que lo fueron ayer. Con el transcurrir del tiempo todo cambia y nada permanece. ¿Será el tiempo otra simetría? Debe serlo, ya que, ningún cambio le afecta y, su transcrrir queda inalterado por mucho camino que pudiera haber recorrido y, eso, lo hace diferente de todo lo demás: Todo cambia excepto el tiempo.
Así, tenemos que llegar a la conclusión de que, el concepto de simetría es, para los Físicos, indispensable como punto de referencia en el descubrimiento de las teorías que más tarde, llegan a convertirse en leyes de la Naturaleza al comprobarse que, son inalterables: Otra vez la Simetría. El desarrollo de la moderna teoría cosmológica, por ejemplo, tiene mucho que ver con la simetría. El signioficado del Tiempo, su aplicabilidad al universo en su conjunto, la forma global del espacio, e incluso el marco subyacente de la relatividad especial, todo descansa sobre fundamentos de simetría.
Durante el último siglo un concepto muy importante en Física, sobre todo en Mecánica Cuántica, ha sido y es el de simetría. Uno de los resultados más bonitos de la Física dice que allá donde hay una simetría hay una cantidad conservada. Es lo que se llama teorema de Noether. De este modo, las leyes de la Física pueden ser iguales bajo una u otra simetría y para cada uno de esos casos se conservará algo. Así por ejemplo, la simetría de traslación temporal corresponde a una cantidad conservada: la energía. También ocurre que las leyes de la física son las mismas bajo unas transformaciones de rotación en el espacio tridimensional y eso significa que se conserva el momento angular.
Allí donde veámos presente la simetría, debemos prestar atención, ya que, podría ser el indicio de que algo importante se podría derivar de esa simetría presente que, en física, como hemos comentado, es un principio de gran importancia.
Oct
9
El Newton Humano
por Emilio Silvera ~ Clasificado en Newton ~ Comments (2)
Sir Isaac Newton [1642-1727]
La grandeza de Newton ha sido reconocida por todos (polémicas aparte), y, el mismo Einstein -de alguna manera el que finalizó su teoría de la gravitacíon universal- así lo dejó plasmado en las palabras siguientes:
Observad las estrellas y aprended de ellas,
En honor al maestro todas deben girar,
Cada una en su trayectoria, sin un ruido,
Siguiendo el principio de Newton.
Mewton elaboró una explicación cuantificada matemáticamente de la gravitación que abarcaba por igual fenómenos terrestres y celestes. Al hacerlo demolió la división aristotélica del universo en dos ámbitos, uno por encima y otro por debajo de la Luna, y creó una base física para el Universo copernicano.
Mewton elaboró una explicación cuantificada matemáticamente de la gravitación que abarcaba por igual fenómenos terrestres y celestes. Al hacerlo demolió la división aristotélica del universo en dos ámbitos, uno por encima y otro por debajo de la Luna, y creó una base física para el Universo copernicano.
La perfección y seguridad con la que realizó esta tarea fueron tales que su teoría llegó a ser considerada durante más de dos siglos, como algo cercano a un mensaje de Dios. Aún hoy, cuando la dinámica newtoniana es contemplada como sólo una parte de la tela más vasta pintada por la relatividad de Einstein, la mayoría de nosotros seguimos pensando en términos newtonianos, y las leyes de Newton son eficaces para guiar las naves espaciales a la Luna y los planetas.
de donde:
F es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
G es la constante de Gravitación Universial.
Sin embargo, el hombre cuya explicación del Cosmos vive en la mente de más de mil millones de personas era uno de los más extraños y difícilmente accesibles individuos que haya vivido nunca y, en su vida privada tenía aficiones insospechadas como la de aquellos papeles de Alquimía comprados en una Subasta y que estaban dentro de un viejo Baúl de Newton.
Una muestra de los Papeles de Newton conservados en la Bibliteca de Israel
Según el curador de la Biblioteca Nacional de Israel, Newton creía que la Biblia contenía un código para acercarse al mundo natural y hacer predicciones –de la misma forma que observando la naturaleza se pueden formular leyes y predecir fenómenos.
Basándose en el Libro de Daniel, Newton pronóstico que el Apocalipsis sucedería el año 2060, o 1260 años después de la coronación de Carlomagno.
Claro que Newton era mucho más que esos escarceos esporádicos que pudiera hacer por la Alquimia. Cuando la Universidad se vio oblugada a cerrar sus puertas obligada por la Peste de 1665, envió a todos sus estudiantes a casa. Mewton regresó a la Granja de su padre y, tenía por aquel entonces 22 años. En su pueblo natal de Woolsthorpe disfrutó de dos años de vaciones forzosas que le fueron muy frrctíferas y más para la Historia de la Ciencia.t
Allí, alejado de todos y en plena Naturaleza, llevando una vida bucólica y relajada. Newton pudo estar en contacto directo con la Naturaleza que amaba y se pasaba el día pensando sobre las cuestiones que llamaban su atención. Idealesgeneiales sobre la naturaleza de la luz y sus experimentos del prisma, una mezcla de colores del espectro que, en realidad, abrió el camino a una óptica más avanzada.
La naturaleza de la luz
Apuntes sobre la Naturaleza de la luz
Sus estudios sobre la naturaleza de la Lus y los telecopios son ahora bien conocidos por todos y también los avances a que dieron lugar todas a quellas ideas de un chico de 22 años. De aquellos etudios salieron trabajos de gran importancia que le dieron al mundo buenas herramientas para avanzar en otros campo de la Física.
El siglo XVIII, ha sido llamado Siglo de las Luces, porque albergó un movimiento de verdadera revolución intelectual, terreno abonado por matemáticos y científicos como el italiano Galileo, el polaco Copérnico, el francés Descartes, el holandés Huygens y, los británicos Charles Darwin e Isaac Newton.
El año en que moría Galileo, nació Isaac Newton en Woolsthorpe, una humilde aldea inglesa, y en el seno de una familia sumamente modesta, esencialmente campesina, que no contaba con grandes medios de fortuna. Su padre, labriego analfabeto, murió meses antes de que naciera el futuro sabio. El muchacho crecía y se desarrollaba en un ambiente rural en el que no se le ofrecían grandes problemas intelectuales; pese a que su gran curiosidad y su notable inteligencia, que empezaron a manifestarse en los primeros juguetes que construyó para él y para sus amigos: pequeños molinos de viento, papalotes, relojes hidráulicos y otros ingeniosos artefactos. Pronto dedicó casi todo su tiempo al estudio apasionado de las matemáticas, devorando en escasos meses todos los libros que contenían las pequeñas bibliotecas locales.
A los catorce años dejó de asistir a la escuela para ayudar a su madre, viuda por segunda vez, por lo que regresó a la explotación de la granja familiar. Abandonar sus estudios hizo que el joven Newton se sintiera profundamente desgraciado. Sus labores campesinas, no le dejaban tiempo para sus especulaciones y lecturas, o para la construcción de sus artefactos, pero un tío suyo, William Ayscough, que se dio cuenta de cuan penosa era para el joven aquella situación, y, como era hombre ilustrado, miembro del Trinity College de Cambridge, aconsejó a la madre para que el joven Newton volviera a la escuela, esta vez con la intención de prepararlo para su ingreso en la Universidad de Cambridge, cosa que tuvo lugar en 1661.
A partir de aquel día, el progreso de Newton fue rapidísimo. Cuatro años más tarde recibía su diploma de bachiller, y en el transcurso de aquel tiempo consiguió impresionar muy profundamente, con sus vastos conocimientos y su extraordinaria rapidez mental, a sus condiscípulos y maestros. El mismo año en que recibió su diploma descubrió el famoso teorema en el que desarrollaba el binomio que todos los estudiantes de álgebra conocen hoy en día con el nombre de su descubridor: el binomio de Newton. Y unos meses después descubrió los elementos del cálculo diferencial o integral, a los que dio el nombre de “fluxiones”. Era una etapa singularmente creadora, porque, como es bien sabido, los grandes matemáticos -en esto se parecen a los atletas- dan lo mejor de sus esfuerzos durante los años juveniles; el matemático que a los treinta años no ha producido ningún descubrimiento valioso puede considerarse hombre fracasado.
Newton escribió,- a los 24 años, mayo de 1666-: “Conseguí adivinar los principios del cálculo integral y el método para calcular el área de las curvas y el volumen de los sólidos, y aquel mismo año empecé a pensar en cómo calcular la gravedad con relación a la órbita de la Luna, y habiendo comparado la fuerza requerida para mantener a la Luna en su órbita con la fuerza de la gravedad en la superficie de la Tierra, me pareció que coincidían bastante exactamente. Todo esto ocurría en 1665 y 1666, pues en aquellos años me hallaba yo en la plenitud de mis fuerzas.”
En aquel mismo período empezó a trabajar también en una serie de experimentos acerca de la luz y los colores: el resultado de sus investigaciones fue presentado en un estudio que entregó a la Royal Society de Londres años más tarde, en 1672 ,el año en que fue elegido miembro de aquella sociedad de sabios.
En 1684 tres miembros de la Royal Society, el astrónomo Edmund Halley, Christopher Wren, arquitecto de la catedral de de Londres, y el físico Robert Hooke, mantenían en Londres una animada discusión que acabó en una apuesta: ¿qué tipo de trayectoria describen los planetas alrededor del Sol? Wren ofreció 40 chelines a quien aportara la solución.
De los tres, Halley fue el que más se empeñó en encontrar una solución, hasta el punto de viajar a Cambridge para trasladar la pregunta a Newton, el excéntrico profesor de matemáticas. Allí pudo preguntarle directamente: ¿qué tipo de trayectoria describen los planetas alrededor del Sol? Sobre esta entrevista no sabríamos nada si no llega a ser por Abraham de Moivre, gran matemático y amigo de Newton, que dejó escrito lo siguiente sobre este encuentro:
Newton contestó inmediatamente que era una elipse. El doctor, lleno de alegría y asombro, preguntó cómo lo sabia. “Porque lo he calculado”, contestó. Entonces el doctor le pidió que le mostrase los cálculos. Newton buceó en su baúl, entre sus papeles, pero no lo encontró. Prometiéndole que los volvería a reproducir.
Telescopio de NewtonSus
Halley y Newton
Ese baúl lo heredó su encantadora sobrina Catherine Conduitt y a través de la descendencia, el baúl terminó en manos del vizconde de Lymington. Casi nadie había visto nunca los documentos que contenía el baúl, y una leyenda cuenta que una vez un obispo, picado por la curiosidad, examinó el contenido del baúl y lo cerró inmediatamente horrorizado. Durante mucho tiempo el contenido del baúl siguió siendo un misterio y su contenido calificado como no apto para la difusión.
El vizconde de Lymington, acuciado por algunos problemas financieros, un divorcio y algunos problemas de impuestos, decide poner a la venta el conjunto de documentos de Newton que su familia poseía desde hacía más de doscientos años.
En 1936, se subasta en Sotheby’s (Londres) el contenido de un baúl metálico lleno de manuscritos de Isaac Newton. Casi todo el lote fue adquirido por John Maynard Keynes, el famoso economista, al que gustaba coleccionar textos científicos antiguos. (el resto de la historia ya os la conté arriba).
Fotografía de la casa natal de Isaac Newton en la localidad de Woolsthorpe , en Lincolnshire, donde nació prematuramente aquel 4 de enero de 1643 (aunque en algunas referencias se menciona que esta es la casa donde vivió en Grantham años después) . Newton era hijo único, el hijo póstuno de un pequeño terrateniente analfabeto. Era tan pequeño al nacer que su madre , Hannah Ayscough, diría que cabía en una botella de cuarto. Su padre había muerto unos meses antes y con sólo tres años tuvo que abandonar la casa materna cuando Hannah se casó por segunda vez y su nuevo marido no quiso hacerse cargo del niño.Durante el resto de su infancia viviría en casa de su abuela materna , a dos kilómetros de distancia de su madre , algo que seguramente influiría en el carácter silencioso, reservado y poco sociable de Newton a lo largo de su vida. De todas formas es difícil juzgar la personalidad de una mente tan poderosa como la del gran matemático inglés , porque su forma de ver el mundo no puede ser igual a la que tenemos los demás, muy por debajo de su capacidad intelectual.
Newton, que había nacido en el mismo año de la muerte de Galileo Galilei, sustituyó el telescopio refractor de Galileo , que tenía una gran lente en la parte delantera para recoger la luz pero que Newton, por su experiencia con la refracción de la luz, sabía que distorsionaba los colores. Así desarrolló el telescopio reflector que empleaba un espejo en lugar de una lente para recoger la luz lo que lo hacía más barato y más eficiente. La Royal Society le pediría que construyese un segundo telescopio y viendo que funcionaba a la perfección le admitieron inmediatamente en la sociedad científica. Sin embargo, Newton no estaría contento con la fama que había ganado con este invento, ya que recibía muchas cartas. Escribiría al secretario de la Royal Society quejándose porque había “sacrificado mi tranquilidad, una cuestión de verdadera importancia” Así era Newton, siempre huyendo de la fama para que no interrumpieran su trabajo, aunque no estaba exento de ambición.
Durante un tiempo se inspiró en los libros de René Descartes, un espíritu afín al suyo. Ambos tenían mucho en común: criados por sus abuelas, niños frágiles y solitarios y con una vida interior muy fuerte que modeló sus caractéres. descartes le hablaba de lo que era el conocimiento humano y, muchos de aquellos pensamientos pervivieron en su intelecto.
La teoría cartesiana del torbellino del sistema solar se convirtió en el estímulo para la demostración de Newton de que los torbellinos no podían explicar las leyes de Kepler del movimiento planetario. La importancia que asignó Descartes a la descripcion algebraica del movimiento alentó a Newton a elaborar una dinámica escrita en una fórmula alternativa del algebra, la geometría. Como esto aún no era matemáticamente factible, Newton halló necesario inventar una nueva rama de la matemática, el cálculo infinitesimal. Éste puso la geometría en movimiento . Las parábolas e hipérbolas que Newton trazó en el papel podían ser analizadas como resultado de un punto en movimiento como la punta del palillo con el que Arquímedes trazaba figuras en la arena. En palabras de Newton: “Se describen líneas, y por ende se generan, no por la oposición de partes, sino por el movimiento continuo de puntos.”
En 1684, Halley visitó a Newton y le formuló su pregunta, y cual sería su asombro cuando éste le respondió inmediatamente: serán elipses. ¿Cómo Newton lo sabía? Fácil, lo había calculado hacía ya un tiempo, en sus anni mirabiles -20 meses entre 1665 y 1666 tiempo que paso confinado en su casa natal a causa de una epidemia de peste que azotó Cambridge-. Diez años después, en 1676, terminó su estudio que por supuesto no publicó. Así, a petición de Halley, Newton revisó y completó sus cálculos y se los envió a Halley. La insistencia de Halley y el genio de Newton convirtió ese pequeño manuscrito en la la obra científica más importante jamás escrita: Philosophiae naturalis principia mathematica. La publicación de los Principia de Newton donde Newton mostraba la equivalencia de su ley de gravitación universal, la atracción gravitatoria es lo que mueve a los planetas, con las leyes del movimiento planetario de Kepler dio término a la Revolución Copernicana y las predicciones que permitía su modelo matemático del universo inauguraban una nueva era para la ciencia. Con un ejemplar de la primera edición de los Principia editado en Londres en 1687 y costeado de los bolsillos del propio Halley -por suerte para éste se vendió muy bien y ya 4 años después era casi imposible encontrar en ejemplar- terminamos esta sección.
Los logros científicos de Isaac Newton son de sobra conocidos. Sin embargo, tuvio otras fasetas menos conocida del precursor de la ciencia moderna: su cargo como intendente de la Real Casa de la Moneda en Londres, por ejemplo. Es posible que Newton pueda ser, sino el que más, uno de los científicos más grandes de la historia de la Humanidad, y, como siempre se exagera, se él se llegó a decir:
“La naturaleza y sus leyes yacían ocultas en la noche.
Dijo Dios: “¡Sea Newton!”, y se hizo la luz.”
Sus estudios sobre problemas de óptica resultaron también de inmensa importancia científica. Fue Newton el primero en demostrar, con ayuda de un prisma, que la luz del sol, que en apariencia es blanca, se compone en realidad de una serie de colores tales como los que forman el arco iris. Los rayos de estos colores dan al mezclarse la impresión de blancura; pero cada haz de color resulta claramente separado de los demás al pasar por un prisma por la razón de que su índice de refracción -es decir, el espacio en que se desvía de la línea recta al pasar por un cuerpo de densidad superior al aire, tal como un prisma de cristal- es ligeramente diferente de los demás. Así se explica, entre otros, el fenómeno del arco iris, en que las gotas de agua difusas en la atmósfera lluviosa obran a manera de pequeños prismas y provocan la refracción de cada color y el fenómeno de las bandas de color en el cielo después de la lluvia.
Estas demostraciones de Newton no habían sido motivadas por un interés puramente teórico por los fenómenos de la luz y la óptica, sino que eran el resultado parcial de sus esfuerzos encaminados a construir un telescopio más eficaz que los de su tiempo. Newton se interesaba por todo; por la luz, por los problemas de propagación de las olas o la aplicación del infinito a las matemáticas, a la astronomía e, incluso, a la teología.
Pero, como es bien sabido, la parte de su obra que mayor fama le ha dado es su descubrimiento de la ley universal de gravitación. Acerca de este descubrimiento, Voltaire ayudó a divulgar una pequeña leyenda: Newton, dormía bajo un manzano y fue despertado, bruscamente, por la caída de una manzana. Este hecho lo condujo a una prolongada reflexión que lo llevó a resolver, científicamente, el problema de la gravitación universal. Curiosamente, ése árbol murió en 1820 y sus astillas se convirtieron en reliquias, y algunas pueden verse en la Royal Society, en una colección dedicada a Newton.
Las epidemias de peste, varias veces interrumpieron sus enseñanzas en la Universidad y el Trinity College y solo en 1686 empezó a redactar en latín su obra fundamental Philosophia Natarals Principia Mathematica, obra que escribió en pocos meses. En 1695, tras una breve incursión en política, el canciller Montaigne, lo nombró como encargado de la Casa de Acuñación de Moneda, de la que fue Director General, lo que significó un situación económica estable y, como alto funcionario le permitió realizar numerosas actividades sociales. En 1703 fue nombrado presidente de la Royal Society; dos años después, la reina Ana le concedió el título de caballero, es decir, desde entonces, debió citársele como sir Isaac Newton.
La complejidad de los problemas que se planteaba Newton era tal que sufrió crisis de nervios, y hay que dejar constancia que, muchas veces, pospusiera la publicación de sus resultados. Por ejemplo, el principio de gravitación lo descubrió en 1666; sin embargo, tardó unos veinte años en publicar su Principia Mathematica. Podemos imaginar cuán desesperadamente complejo era el problema que se había planteado. No había ningún instrumento matemático capaz de enfrentarse con aquel problema, y para hallar la solución, tuvo que inventar un nuevo instrumento matemático, el cálculo integral. Gracias a él pudo satisfacer su conciencia científica y dar a conocer la ley de gravitación en el tercer volumen de su gran libro. Principia.
Newton vivió hasta edad muy avanzada. El mal de piedra y la pulmonía le hicieron sufrir durante los últimos años. Murió en 1727 y fue enterrado en compañía de los más ilustres ingleses, en la abadía de Westminster.
En su epitafio puede leerse : “Honró al género humano.”
recopilado por emilio silvera
Oct
9
¡La Conciencia!
por Emilio Silvera ~ Clasificado en La Mente - Filosofía ~ Comments (17)
Muchos han sido los que han querido explicar lo que es la consciencia. En 1.940, el gran neurofisiólogo Charles Sherrington lo intentó y puso un ejemplo de lo que él pensaba sobre el problema de la consciencia. Unos pocos años más tarde también lo intentaron otros, y antes, el mismo Bertrand Russell hizo lo propio, y en todos los casos, con más o menos acierto, el resultado no fue satisfactorio por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la consciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos para alcanzar una respuesta:
“Suponemos que un proceso físico da comienzo en un objeto visible, viaja hasta el ojo donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan. Esta concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.
La conciencia, de alguna manera, está conectada con el universo
Está claro que en lo más profundo de esta consciencia que no conocemos, se encuentran todas las respuestas planteadas o requeridas mediante preguntas que nadie ha contestado. Para poder llegar a esos conocimientos tan profundamente escondidos dentro de nosotros, debemos observar la Naturaleza que, habiendo logrado traernos hasta aquí, a partir de la materia “inerte”, es la que, contiene todos y cada uno de los datos que nos dirán lo que somos, de dónde venimos y hacia dónde vamos.
En variadas oportunidades he mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o menos acierto, lo que estaba tratando era hacer ver que todo ello es la misma cosa: universo-galaxia-mente. Nada es independiente en un sentido global, sino que son partes de un todo y están estrechamente relacionados.
Una galaxia es simplemente una parte pequeña del universo, nuestro planeta es una mínima fracción infinitesimal de esa galaxia, y nosotros mismos podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, todo forma parte de lo mismo, y aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.
Oct
9
¿Otro Ramanujan?
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (2)
MATEMÁTICAS | En Alemania
Un joven de 16 años resuelve un enigma matemático planteado por Newton hace 350 años
ELMUNDO.es | Madrid
Un adolescente de 16 años ha logrado resolver un enigma matemático planteado por Isaac Newton hace más de 350 años. Shouryya Ray, el joven prodigio que ha sorprendido a la comunidad científica, es un alumno de origen indio que estudia en una escuela secundaria de Dresden, en Alemania.
Este ‘cerebrito’ ha logrado resolver dos teorías de dinámicas de partículas que hasta ahora los físicos sólo podían calcular de manera aproximada con potentes ordenadores.
Gracias a sus ecuaciones, ahora se podrá calcular con exactitud la trayectoria de un proyectil afectado por la gravedad y por la resistencia del aire (el problema propuesto por Newton hace más de tres siglos), y también predecir cómo golperará y rebotará en una pared.
Ray emigró a Dresden desde Calcutta hace cuatro años sin hablar ni una palabra de alemán, un idioma que ahora domina. Sus profesores se dieron cuenta en poco tiempo de que poseía una inteligencia extrordinaria, y le permitieron saltarse dos cursos para que se encontrara en el nivel adecuado para sus capacidades.
Su habilidad para las matemáticas también se debe sin duda a que desde que era muy pequeño, su padre, un ingeniero, le desafiaba con problemas aritméticos. De hecho, antes de cumplir 10 años ya era capaz de resolver ecuaciones complejas.
El joven descubrió los problemas planteados por Newton durante una visita escolar a la Universidad de Dresden, en la que los profesores le explicaron que eran enigmas “irresolubles”. Ahí le ofrecieron datos experimentales con los que analizar la trayectoria del lanzamiento de una pelota. Los métodos para resolverlo eran aproximaciones y Ray decidió -«por curiosidad e ingenuidad de estudiante», explicó a ‘The Sunday Times’- buscar la solución definitiva.
“Me pregunté a mí mismo: ¿por qué no intentarlo?“, recuerda el joven. “No me podía creer que no existiera una solución”.
Ray afirma que disfruta mucho de la “belleza intrínseca” de las matemáticas, pero asegura con humildad que no es “ningún genio”, y confiesa que le gustaría también destacar en otras actividades, además de las matemáticas. “Me encantaría jugar mejor al fútbol”, ha reconocido al diario británico ‘The Daily Mail’.
Leído en El Mundo.es