martes, 24 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sí, el saber ocupa un lugar…en nuestras mentes.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay veces en las que nos cuentan cosas y hechos de los que nunca hemos tenido noticias y, resultan del máximo interés.Nuestra curiosidad nos llama a desentrañar los misterios y secretos que, tanto a nuestro alrededor, como en las regiones más lejanas del Universo, puedan haber ocurrido, puedan estar ocurriendo ahora, o, en el futuro pusidieran suceder, ya que, de alguna manera, todas ellas tienen que ver con nosotros.

El Cinturón de Gould es un sector del Brazo de Orión. El Brazo de Orión es la primera gran estructura a la que pertenecemos; grande en sentido galáctico. Es un larguísimo arco estelar de 10.000 años-luz de longitud y 3.500 de ancho. Mucho más del 99% de lo que ven nuestros ojos a simple vista,en una noche normal, está aquí. Muchas personas de ciudad vivirán y morirán sin ver en persona nada más allá del Brazo de Orión, jamás.

Se ha discutido, argumentado y teorizado sobre la vida durante siglos, quizás milenios. Lo que conocemos como vida es ni más ni menos que una estructura formada de átomos que se han organizado y que lograron crear mecanismos que les permiten mantener esa organización. Decir que los átomos “se han organizado” es una locura. En el mundo material no hay nada más básico que un átomo, y algo tan básico no es capaz de hacer algo tan complejo como “organizarse”.

¿O sí?


Una célula es un sistema muy complejo (célula animal)

La realidad es que sí. Los átomos, en cumplimiento de leyes físicas simples, se organizan en estructuras. La más sencilla es una molécula, que puede estar formada por algunos átomos, pero se llega a estructuras bastante complejas y ordenadas, como los cristales y fibras

naturales y maravillosas formas como las buckyballsBuckyballsBuckyballs es el nombre coloquial utilizado para describir un fullereno. Los avances logrados por la Humanidad, son tan grandes que, estando a nuestro alrededor, no somos conscientes de su verdadero alcance.

nanotubos-de-carbono.png

Nanomateriales aplicados a dispositivos electrónicos y los tres tipos de geometrías de nanotubos de c

Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.

Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética. No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo. Pero sigamos.

Claro que nada de esto se aproxima al nivel de organización que implica la vida. Recordemos ahora la parte de la frase sobre los átomos que dice “lograron crear mecanismos”, lo cual jamás puede ser cierto… al menos no en la forma directa que uno se imagina al primer momento. Un virus, por ejemplo, es una especie de “máquina” capaz de propagarse. No de reproducirse, al menos no en el sentido que se le da a la palabra en biología, pero sí de activar un mecanismo que permite obtener copias de sí mismo.

Los virus infectan tanto células como bacterias porque no pueden multiplicarse por sí mismos. Al hacerlo, usan las moléculas y enzimas de su desafortunado hospedero para replicar su genoma y construir sus cápsulas virales, las cuales son muy parecidas a unas sondas espaciales pero que, en este caso, sólo transportan ADN o ARN con el único fin de repetir el ciclo en otra víctima.

Antes de seguir quiero hacer una salvedad: todo lo que diga encontrará alguien para discutirlo. Los conceptos básicos que se aplican a la vida aún no están del todo definidos. Por ejemplo, sé que hay corrientes de pensamiento para las cuales lo virus no son seres vivos. De acuerdo, sólo es cuestión de definiciones, y no es necesario —ni posible— discutirlas aquí. Yo prefiero incluir a los virus en este análisis porque son algo así como el primer nivel de estructura a discutir (sí, sé que existen estructuras menores, pero no con tanta entidad).

Siguiendo en la línea que venía, la cuestión es que parece haber una barrera entre el nivel de organización que pueden alcanzar los átomos por leyes simples de la física y la estructura que presenta la vida. ¿Es esto cierto? Da para discutir mucho, pero creo, en base a muchas líneas de investigación y descubrimientos que se vienen presentando, que no. La estructuración de la vida es gradual. De un evento físico no surge una célula ni, mucho menos, un ratón, pero la realidad es que cada uno de los pasos intermedios que llevan desde un amasijo de átomos a una de estas formas de vida son dados por fenómenos que tienen que ver con la física, la química y… la propia orientación de lo que es la vida. Digamos que la vida, una vez aparecida, crea un entorno de leyes propias que impulsan su desarrollo. ¿Cómo y por qué se crean estas leyes, en base a qué voluntad? Ninguna. (Y aquí surgirán de nuevo las discusiones.) Simplemente, no puede existir la vida sin esas leyes. El hecho de que estemos en un planeta que tenga vida por doquier, y muy desarrollada, es porque la vida, cuando existe, sigue estas reglas que le permiten desarrollarse, y si no las sigue desaparece. Es como decir que hay leyes físicas, leyes básicas del universo, que han sido puestas especialmente para la vida. De hecho, considerando la vida una forma de la materia, creo que es así. Es decir, la vida —cumpliendo los requisitos— sería algo inevitable en el Universo…

                                                                        Kepler-16b, un mundo que orbita dos soles (NASA).

Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exosaturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus. Otros mundos, más parecidos a nuestra Tierra, ¿por qué no tendrían formas de vida? Lo lógico es pensar que sí, que albergue la vida más o menos inteligente y conforme se haya producido su evolución.

Me estoy extendiendo fuera del tema. No pretendo estudiarlo filosóficamente, sino usar un poco de lógica para llegar a una respuesta para una pregunta que se hacen los científicos, y que nos hacemos todos, excepto aquellos que quieren creer en entidades superiores que se ocuparon de ello (lo cual es, simplemente, pasar el problema a otro nivel, sin resolverlo): ¿Cómo es que la vida evolucionó desde átomos, moléculas, células, seres simples, a una especie como la nuestra, tan tremendamente compleja y capaz de, como lo estoy haciendo yo, reflexionar sobre sí misma, transmitirlo y, además, cambiar el mundo como lo estamos cambiando?

Reactor de fusión Tokamak

Lo estamos cambiando de muchas maneras.  Estuve pensando que, si se prueba que es cierta, esta teoría de los georreactores planetarios se debe aplicar a todos los cuerpos planetarios del universo. Estoy seguro de que ustedes deben conocer la ecuación de Drake que intenta estimar el número de inteligencias que podrían existir en el universo, algo que se tiene en gran consideración en el SETI. ¿Se debería agregar un nuevo valor a esta fórmula que represente el tiempo esperado de vida del georreactor en un planeta tipo Tierra? Quizá en el núcleo de los planetas que forman ese escudo magnético a su alrededor, esté el secreto del surgir de la vida en ellos.

Yo creo en una cosa, y esto puede desatar miles de discusiones: llegar desde materiales básicos a la creación del ser humano se basó en juntar los materiales (átomos), tener las leyes físicas actuando y a la casualidad (o azar). ¿Qué quiero decir con “casualidad”? Que la existencia de la vida está ligada a un sorteo permanente. Que hay una enormidad de cosas que son necesarias para que pueda haber vida (es innegable que se han dado en este planeta) y para que pueda continuar una vez producida. Que fue necesario un transcurso determinado de hechos y situaciones para que los microorganismos aparecieran, se propagaran, compitieran y se fueran haciendo más y más complejos. Que se debieron dar infinidad de circunstancias para que estos organismos se convirtieran en estructuras multicelulares y para que estas estructuras se organizaran en órganos ubicados dentro de seres complejos. Y que se necesitaron enormidad de coincidencias y hechos casuales para que las condiciones llevaran a algunos de estos seres terrestres, vertebrados, pequeños mamíferos (por los cuales durante una enormidad de tiempo ningún juez cósmico hubiese apostado), a evolucionar para convertirse en los animales que más influimos en este mundo: nosotros.

La cantidad de circunstancias, situaciones y condiciones en juego es enorme. En un libro muy interesante de Carl Sagan, anterior a Cosmos, llamado Vida inteligente en el Cosmos (junto a I. S. Shklovskii), se plantea muy bien este tema. Se puede encontrar allí una enumeración de las condiciones que requiere la vida y una especie como la nuestra para existir. Desde las características de nuestra galaxia, su edad, composición, situación, forma; a las de nuestro Sol, su sistema de planetas, la ubicación de la Tierra, su tamaño, su rotación, su inclinación, su composición, los vecinos que tiene… y mucho más.

Llegar a esta red compjeja que es nuestra mente, ha costado, más de diez mil millones de años, el tiempo que necesitaron las estrellas para fabricar esos elementos de los que estamos hechos. El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos. Pero sigamos.

Yo voy a agregar algunas cosas que me parecen significativas, que han surgido de los últimos descubrimientos y observaciones. Enumero algunas, aunque ya verán que hay más. Extinciones y cambios físicos producidos por impactos de asteroides; influencia de estrellas cercanas, fijas y viajeras; el “clima” interestelar; el “clima” galáctico; las circunstancias que han sufrido los otros planetas; nuestras circunstancias, nada comunes…

Extinciones

 

Grandes rocas errantes pululan por el Sistema Solar. Los asteroides no son ni cosa del pasado ni riesgos de muy baja probabilidad. Hay pruebas muy concretas sobre diversos impactos de consideración sobre nuestro mundo. Encima, hasta parecen tener una regularidad.  No es sólo que tenemos la suerte de que en los últimos 10 millones de años no haya caído un gran asteroide en la Tierra, lo que nos hubiese hecho desaparecer incluso antes de que apareciéramos, sino que tenemos la suerte de que antes de eso sí cayeron de esos asteroides, y de que cambiaran las cosas a nuestro favor. ¿Estaríamos aquí si no hubiese impactado un cuerpo de unos 10 km de diámetro en el Caribe, más precisamente sobre el borde de la península de Yucatán, y hubiese producido una hecatombe para quienes reinaban en el mundo en esa época, los dinosaurios? ¿Quién puede saberlo? ¿Y si no hubiesen ocurrido las extinciones anteriores, fueran por las causas que fueran, estaríamos aquí? Quizás un día se sepa lo suficiente como para simular en computadoras una ecología planetaria entera y ver qué hubiera pasado. Será muy interesante.

Los asteroides cayeron, es un hecho. Y forman parte de las condiciones necesarias —algunos discutirán que no— para que estemos aquí… Veamos algunas nuevas informaciones:

  Los Amonites fueron conrtemporáneos de los Dinosaurios. Los amonites eran una de las clases de moluscos cefalópodos que existieron en las eras del Devónico hasta el Cretácico. Hay de diferentes tipologías según la profundidad en la que estaban inmersos, dependiente las distintas zonas de todo el mundo. Al ser un fósil, poco se puede saber de las partes blandas de este organismo marino, suponiéndose que fueron similares a los actuales nautilos, cuyo cuerpo constaba de una corona de tentáculos en la cabeza que asoman por la abertura de la llamada concha. El fósil encontrado en las cercanías de El Chaltén pertenecería al cretácico inferior del estrato llamado Río MAYER, con una antigüedad de unos 500 millones de años.

Hace 380 millones de años se produjo una importante extinción entre los animales que poblaban el mar, en especial de los amonites, unos moluscos emparentados con los pulpos y calamares pero cubiertos con una concha espiralada y de tamaños a veces gigantescos. Nunco se supo por qué fue. Ahora surgen pistas de que esta mortalidad estuvo relacionada —igual que hace 65 millones de años, en el momento en que los dinosaurios dominaban nuestro mundo— con el impacto de un cuerpo extraterrestre.

Algunos geólogos dicen que hace unos 380 millones de años, un asteroide llegado desde el espacio golpeó contra la Tierra. Creen que el impacto eliminó una importante fracción de los seres vivos. Esta idea puede fortalecer la discutida conexión entre las extinciones masivas y los impactos. Hasta ahora, el único candidato para hacer esta relación era el meteoro que habría causado el exterminio de los dinosaurios, caído en la península de Yucatán, en México.

Brooks Ellwood, de Louisiana State University en Baton Rouge, Estados Unidos, dice que los signos de una antigua catátrofe coinciden con la desaparición de muchas especies animales. “Esto no quiere decir que el impacto en sí mismo haya matado a los animales; la sugerencia es que tuvo algo que ver.” Y agregó que hoy, aunque no se puedan encontrar rastros del cráter de una roca del espacio, se puede saber dónde ha caído.

Otros investigadores coinciden en que hubo un impacto más o menos en esa época, pero creen que la evidencia de que produjo una extinción masiva es muy débil. Claro que, tal valoración no está avalada por hechos y, si tenemos en cuenta el tiempos transcurrido desde los hechos, buscar pruebas materiales…no es nada fácil

El equipo de Ellwood descubrió rocas en Marruecos que fueron enterradas alrededor de 380 millones de años atrás bajo una capa de sedimento que parece formada por restos de una explosión cataclísmica. El sedimento tiene propiedades magnéticas inusuales y contiene granos de cuarzo que parecen haber experimentado tensiones extremas.

Más o menos para esa época se produjo la desaparición del registro fósil de alrededor del 40% de los grupos de animales marinos.

El geólogo Paul Wignall, de la Leeds University, Reino Unido, dice que hay una fuerte evidencia del impacto. Si se lo pudiese relacionar con una extinción masiva sería un gran hallazgo. Si fuera cierto, el potencial letal de los impactos crecería enormemente.

Pero no está claro cuántas desapariciones se produjeron en la época del impacto. Wignall dice que la mortalidad puede haber sido mucho menor que lo que sugiere el equipo de Ellwood. Él piensa que los paleontólogos deberían buscar las pistas que les den una mejor imagen de lo que pasó en aquella época.

El paleontólogo Norman MacLeod, que estudia las extinciones masivas en el Natural History Museum de Londres, coincide en que aunque 40% es el valor correcto para aquel período de la historia de la Tierra, no es una extinción masiva, sino parte de una serie de sucesos mucha más extensa. MacLeod duda de que las extinciones masivas sean resultado de intervenciones extraterrestres. “Los impactos son un fenómeno bastante común”, dice. “Pero no coinciden significativamente con los picos de extinción.”

Las estrellas vecinas

 


Nuestro vecindario galáctico 

Nuestro vecindario galáctico es muy humilde. Nada de supergigantes o exóticas estrellas de neutrones. La mayoría de estrellas vecinas -unas 41- son simples enanas rojas (estrellas de tipo espectral M), las estrellas más comunes del Universo. Cinco son estrellas de tipo K, dos de tipo solar (tipo G, Alfa Centauri  A y Tau  Ceti), una de tipo F (Procyon) y una de tipo A (Sirio). Los tipos espectrales se ordenan según la secuencia OBAFGKM, siendo las estrellas más calientes (y grandes) las de tipo O y las más pequeñas y frías las de tipo M (siempre y cuando estén en la secuencia principal, claro). Además tenemos tres enanas blancas y tres candidatas a enanas marrones. Como vemos, no nos podemos quejar. Hay toda una multitud de posibles objetivos para nuestra primera misión interestelar. ¿Cuál elegir?

El llamado Grupo Local de galaxias al que pertenecemos es, afortunadamente, una agrupación muy poco poblada, sino podríamos ser, en cualquier momento (o haber sido aún antes de existir como especie) destruidos en catástrofes cósmicas como las que ocurren en los grupos con gran población de galaxias. Los astrónomos comprenden cada vez más el porqué de las formas de las galaxias, y parece que muchas (incluso la nuestra) han sufrido impactos contra otras para llegar a tener la figura que tienen. Gracias al telescopio espacial Hubble se están viendo en los últimos tiempos muy buenas imágenes de colisiones entre galaxias.

El “clima” interestelar

 

La Nube Interestelar Local se encuentra dentro de una estructura mayor: la Burbuja Local. La Burbuja Local es una acumulación de materia aún mayor, procedente de la explosión de una o varias supernovas que estallaron hace entre dos y cuatro millones de años. Pero aunque estemos atravesando ahora mismo la Nube Interestelar y la Burbuja locales, nuestra materia no procede de ellas. Sólo estamos pasando por ahí en este momento de la historia del universo. Entramos hace unos cinco millones de años, y saldremos dentro de otros tantos. Nuestro sistema solar –y la materia que contiene, incluyéndonos a ti y a mí– se formó mucho antes que eso, hace más de 4.500 millones de años.

Nuestra Burbuja Local forma a su vez parte del Cinturón de Gould.  El Cinturón de Gould es ya una estructura mucho más compleja y mayor. Es un anillo parcial de estrellas, de unos 3.000 años luz de extensión. ¿Recuerdas aquella nave espacial tan rápida que utilizamos antes? Pues con ella, tardaríamos 12.800.000 años en atravesarlo por completo. Vaya, esto empieza a ser mucho tiempo.

Vivimos dentro de una burbuja. El planeta, el Sistema Solar, nuestro grupo local. El estallido de una supernova ha dejado un resto fósil en nuestro entorno: creó una enorme burbuja en el medio interestelar y nosotros nos encontramos dentro de ella. Los astrónomos la llaman “Burbuja local”. Tiene forma de maní, mide unos trescientos años luz de longitud y está prácticamente vacía. El gas dentro de la burbuja es muy tenue (0,001 átomos por centímetro cúbico) y muy caliente (un millón de grados), es decir, mil veces menos denso y entre cien y cien mil veces más caliente que el medio interestelar ordinario. Esta situación tiene influencia sobre nosotros, porque estamos inmersos dentro. ¿Qué pasaría si nos hubiese tocado estar dentro de una burbuja de gases ardientes resultantes de una explosión más reciente o de otro suceso catastrófico? ¿O si estuviésemos en una zona mucho más fría del espacio? No estaríamos aquí.

El “clima” galáctico

La galaxia en que vivimos podría tener una mayor influencia en nuestro clima que lo que se pensaba hasta ahora. Un reciente estudio, controvertido aún, asegura que el impacto de los rayos cósmicos sobre nuestro clima puede ser mayor que el del efecto invernadero que produce el dióxido de carbono.

Según uno de los autores de este estudio, el físico Nir Shaviv de la Universidad Hebrea de Jerusalén, en Israel, el dióxido de carbono no es tan “mal muchacho” como dice la gente. Shaviv y el climatólogo Ján Veizer de la Universidad Ruhr, de Alemania, estiman que el clima terrestre, que exhibe subas y bajas de temperatura global que al graficarse forman una figura de dientes de sierra, está relacionado con los brazos espirales de nuestra galaxia. Cada 150 millones de años, el planeta se enfría a causa del impacto de rayos cósmicos, cuando pasa por ciertas regiones de la galaxia con diferente cantidad de polvo interestelar.

                                Los rayos de todo tipo se nos vienen encima desde todos los rincones del Universo, y, algunos no llegan a la superficie de nuestro planeta gracias al escudo protector que salvaguarda nuestra integridad física.


Los rayos cósmicos provenientes de las estrellas moribundas que hay en los brazos de la Vía Láctea, ricos en polvo, incrementan la cantidad de partículas cargadas en nuestra atmósfera. Hay algunas evidencias de que esto ayuda a la formación de nubes bajas, que enfrían la Tierra.

Shaviv y Veizer crearon un modelo matemático del impacto de rayos cósmicos en nuestra atmósfera. Compararon sus predicciones con las estimaciones de otros investigadores sobre las temperaturas globales y los niveles de dióxido de carbono a lo largo de los últimos 500 millones de años, y llegaron a la conclusión de que los rayos cósmicos por sí solos pueden ser causa del 75% de los cambios del clima global durante ese período y que menos de la mitad del calentamiento global que se observa desde el comienzo del siglo veinte es debido al efecto invernadero.

La teoría, como es normal en la ciencia, no es del todo aceptada. Los expertos en clima mundial están a la espectativa, considerando que algunas de las conexiones que se han establecido son débiles. Se debe tener en cuenta, dicen los paleontólogos, que se trata de una correlación entre la temperatura, que es inferida de los registros sedimentarios, de la cantidad de dióxido de carbono, que se deduce del análisis de conchas marinas fosilizadas, y de la cantidad de rayos cósmicos, que se calculan a partir de los meteoritos. Las tres técnicas están abiertas a interpretaciones. Además, uno de los períodos fríos de la reconstrucción matemática es, en la realidad, una época que los geólogos consideran caliente. De todos modos, también hay muchos otros que están muy interesados e intrigados.

La variabilidad solar afecta la cantidad de rayos cósmicos que impactan a nuestro planeta. El Sol produce radiaciones similares a los rayos cósmicos, especialmente en el período más caliente, llamado máximo solar (maximum), de su ciclo de 11 años. Estudios anteriores no pudieron separar el impacto climático de esta radiación, de los rayos cósmicos que llegan desde la galaxia y de la mayor radiación calórica que llega desde el Sol.

Los otros planetas y la Luna

 

 

Cinturón de Gould. La línea indicada como 500 PC (500 parsecs) equivale a una distancia al Sol (en el centro) de 1.630 años-luz; es decir, tiene un diámetro de 3.260 años-luz, que son 31.000 billones de kilómetros.  l Cinturón de Gould es un sector del Brazo de Orión.  El Brazo de Orión es la primera gran estructura a la que pertenecemos; grande en sentido galáctico. Es un larguísimo arco estelar de 10.000 años-luz de longitud y 3.500 de ancho. Mucho más del 99% de lo que ven nuestros ojos a simple vista,en una noche normal, está aquí. Muchas personas de ciudad vivirán y morirán sin ver en persona nada más allá del Brazo de Orión, jamás.

Recientemente, se ha anunciado el hallazgo de un sistema planetario que podría ser similar al nuestro. En realidad no se ha logrado aún una observación tan directa que permita afirmarlo, sino que se deduce como posibilidad. Este sistema presenta un planeta gaseoso gigante similar a nuestro Júpiter, ubicado a una distancia orbital similar a la que tiene Júpiter en nuestro sistema. El sol es similar al nuestro, lo que deja lugar a que haya allí planetas ubicados en las órbitas interiores, dentro de la franja de habitabilidad en la que la radiación solar es suficiente para sostener la vida y no es excesiva como para impedirla. Si nuestro sistema no tuviese las características que posee, la vida en la Tierra tendría problemas. Por ejemplo, podría haber planetas, planetoides o grandes asteroides (de hecho algo hay) que giraran en planos diferentes y con órbitas excéntricas y deformes. Cuerpos así podrían producir variaciones cíclicas que hicieran imposible —o difícil— la vida. Venus parece haber sufrido un impacto que le cambió el sentido de rotación sobre sí mismo. Es posible que este impacto también haya desbaratado su atmósfera y su clima. Podría habernos pasado a nosotros, y de hecho parecería que nos ocurrió, sólo que fue durante el génesis del sistema planetario y además (otra gran casualidad y premio cósmico) nos dejó a la Luna, excelente compañera para facilitar la vida.

           ¿Características especiales de nuestro mundo?

 

Según una teoría del geofísico J. Marvin Herndon, la Tierra es una gigantesca planta natural de generación nuclear. Nosotros vivimos en su delgada coraza, mientras a algo más de 6.000 kilómetros bajo nuestros pies se quema por la fisión nuclear una bola de uranio de unos ocho kilómetros de diámetro, produciendo un intenso calor que hace hervir el metal del núcleo, lo que produce el campo magnético terrestre y alimenta los volcanes y los movimientos de las placas continentales.

La cosa no acaba aquí: si el calor del reactor es el que produce la circulación de hierro fundido (por convección) que genera el campo magnético terrestre, entonces los planetas que no tienen su reactor natural no tendrían un campo magnético (magnetósfera) que los proteja de las radiaciones de su sol —como Marte y la Luna— lo que hace que difícilmente puedan sostener vida.

Pero ésta es sólo una teoría. Lo que está más en firme es que nuestro mundo y su luna forman un sistema muy particular, mucho más estable que si se tratara de un planeta solitario. Gracias a esto —a nuestra Luna— tenemos un clima más o menos estable, conservamos la atmósfera que tenemos y la velocidad y el ángulo de nuestro giro son los que son. Si no estuviese la Luna, el planeta se vería sujeto a cambios en su eje de rotación muy graves para los seres vivos.

emilio silvera

¿Cuándo nos daremos cuenta?

Autor por Emilio Silvera    ~    Archivo Clasificado en La Ciencia debe avanzar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sí, ¿cuando nos daremos cuenta de que, el futuro mismo de la Humanidad, depende directamente de lo que hagamos en el campo de la Ciencia? Son las distintas disciplinas del saber Humano las que deben avanzar para ir buscando las soluciones que necesitamos para cubrir, todas nuestras necesidades que, cada día, con el crecimiento imparable de la población mundial, son más y más exigentes.

Se ha reunido el Consejo de Investigación y han denunciado la resistencia política a invertir en la Investigación y conceder subvenciones a proyectos científicos encaminados al avance de la Humanidad. Todos los Científicos del Mundo quieren y desean que se produzca un gran impulso en este campo que, como sabemos y a pesar de lo que muchos creen, es la hermana pobre de las inversiones, ya que, lo que prima son los resultados inmediatos que, en Ciencia, están ausentes..

crisis_paises

Los intereses especuladores de los Mercados y la irresponsababilidad e incompetencia de los políticos, han hecho posible que estemos situados en este lugar en el que, muchos son los que sufren y, la Ciencia, no podía ser una excepción.

En una situación de crisis como la actual, y cuando lo que está en cuestión son las inversiones dedicadas a la investigación, cualquier esfuerzo para mejorarlas, o por lo menos preservarlas, no es en vano. Así lo ha entendido el Consejo Europeo de Investigación (ERC , según sus siglas en inglés), una agencia dirigida por científicos fundada en 2007 dentro del 7º Programa Marco de Investigación. En su última reunión, celebrada recientemente en Barcelona, ha actuado de portavoz de la comunidad científica europea, que ha sacado todo su músculo para tratar de hacer ver a los burócratas de Bruselas y de los Estados miembros la necesidad de seguir la vía de éxito que puede situar a Europa en la misma liga que juega Estados Unidos: la de la excelencia científica. Consolidar el ERC como una estructura fija de financiación científica que solo tenga en cuenta la excelencia y no la nacionalidad es ahora el objetivo para disponer de un instrumento de política científica a escala europea.

Parece que en Estados Unidos, la Ciencia camina por otro sendero diferente al de Europa, y, allí, a pesar de todo, su Presidente sí se reune y escucha a los científicos que le ponen al día de lo que interesa a todos.

Homenaje a la ciencia por parte del presidente de los EEUU, donde explica la importancia que ésta tiene como fuente de conocimiento y motor de la economía. Interesante su mensaje: “los políticos debemos escuchar los mensajes de los científicos, aunque éstos no sean complacientes, especialmente cuando no sean complacientes”. Un buen discurso para ser escuchado un 12 de febrero, el día del cumpleaño de Charles Darwin.

El presente mapa presenta el resultado de la evaluación realizada por el Instituto Fordham sobre estado de las ciencias en EEUU, representado por estados y calificado desde la A (máxima posible) a F (la peor posible). Juzgar por vosotros mismos.

Mientras tanto La Academia Europea, dio la visión de los científicos sobre el ERC y dijo que habían sido muy bienvenidas en la comunidad científica sus subvenciones. Este entusiasmo no ha sido compartido, o al menos al mismo nivel, por los políticos y burócratas, europeos o de los organismos nacionales de investigación. Más de 900 científicos y universitarios de instituciones españolas reivindican el pensamiento crítico en un manifiesto que presentan hoy en Madrid, en un acto que se celebrará en el Consejo Superior de Investigaciones Científicas (CSIC).

– Hasta la fecha, el Consejo Europeo de Investigación (ERC) ha financiado 1.069 proyectos a jóvenes científicos y a investigadores consolidados. Su presupuesto para los primeros siete años de actividad asciende a 7.500 millones de euros.

Claro que, en Estados Unidos siempre parecen ir algunos pasos por delante: Genetistas estadounidenses anunciaron hoy que han producido por primera vez una célula controlada por ADN elaborado por el ser humano, un paso que acerca la ciencia a la creación de vida artificial.

Esta es la primera especie autoduplicable que existe en el planeta cuyo padre es un ordenado. Desde hace décadas científicos de todo el mundo manipulan algunos genes de animales y plantas, pero es la primera vez que alguien cambia el genoma completo.

El “universo” de lo muy pequeño: NANO : Blog de Emilio Silvera V. | Ciencia-Física | Scoop.it

Claro que también, se está avanzando, a pesar de todo en los otros ámbitos de la Ciencia y, no sólo los científicos hacen que eso sea así, algunos, aportamos un granito de arena con nuestras humildes aportaciones. La Imagen de arriba la encontré repasando por ahí y estaba en un artículo mío: El “universo” de lo muy pequeño: NANO : Blog de Emilio Silvera V.

No será posible que la Ciencia avance si no ponemos el remedio para que ello suceda y, debemos comenzar por la enseñanza en la que, desgraciadamente, están sólidamente establecidos conceptos caducos que, amntienen a una clase de “científicos” que, al no tener los suficientes alicientes para que los cambios sde produzcan (podrían ser nefastos para ellos), dejan que el tiempo transcurra y que todo siga igual. Lo pagan los jóvenes estudiantes de Ciencia que, de esta manera, quedan abocados a un retroso en el progreso que no podemos consentir.

Me alegra leer: “Expertos de todo el mundo diseñan un colisionador de partículas lineal para desvelar los grandes misterios del universo”.  Los físicos se han cansado de dar rodeos. Durante el último cuarto de siglo han utilizado máquinas circulares, cada vez de mayor tamaño, con las que aclarar cómo surgió el universo tras el Big Bang. Estas máquinas redondas y kilométricas, donde giran partículas subatómicas rozando la velocidad de la luz, han dado hallazgos claves y aún se espera de ellas descubrimientos dignos de un Nobel. Sin embargo, los físicos del mundo lo tienen claro: la próxima gran máquina debe ser recta.

Los expertos denominan a este nuevo gran laboratorio acelerador de partículas lineal. Será el sucesor del Gran Colisionador de Hadrones de Ginebra, el LHC, campeón entre de campeones entre los aceleradores circulares.

Es bueno que pensemos en nuevas formas y que nos arriesguemos a recorrer nuevos caminos, no podemos seguir otro siglo pensando que c, la velocidad del la luz en el vacío, nos tiene contreñidos y nos impedirá para siempre los viajes a otros mundos. Si la forma convencional no nos sirve, hay que buscar otras formas nuevas, otros caminos que nos lleven al otro extremo de la Galaxia y, para que eso sea posible, amigos míos, debemos despojarnos de las ataduras  de la física actual que, nos podrá servir de base para avanzar pero, no es suficiente para que se cumpla todo lo que necesitaremos en el futuro.

Fijaos sino, en el empecinamiento que nos traemos desde hace años ya, con “la materia oscura”, con “Bosón de Higgs” y con otros muchos conceptos que desesperados buscamos y no hemos podido encontrar. El mejor ejemplo del objeto perdido es el del Gravitón. ¿Y, si seguimos en nuestras trece y finalmente no aparece ni la “materia oscura ni el bosón de Higgs? ¿qué haremos entonces?

Bueno, entonces sabremos que habíamos elegido caminos equivocados. El camino más cómodo no es siempre el más conveniente y, cuando lanzamos al mundo una teoría que parece que nos da la solución a lo que observamos, debemos, por todos los medios, de contrastarla con la observación y comprobar si son coincidentes teoría y Naturaleza. No siempre lo “más bonito” resulta ser la realidad.

Si somos sensatos y reconocemos que la mecánica cuántica (esa teoría que nos describe a la perfección la Naturaleza), no coincide con nuestro mundo cotidiano que, funciona de otra manera. Entonces, amigos míos, debemos admitir que nuestra realidad está sujeta por nuestras creencias, por nuestros pensamientos y, ¿por qué no? también por nuestros sentimientos. No somos objetivos y dibujamos en nuestras mentes una realidad particular, un escenario del mundo propio, nuestro mundo. Debemos buscar ese otro mundo que escenifica la realidad y acercarnos a él para aprender y saber dónde estamos y a hacia dónde nos dirijimos.

¿Os acordais de aquella noticia?

“Esta semana el equipo de investigación OPERA, del laboratorio europeo de física CERN, dio a conocer una medición realizada en la que se registró por primera vez un exceso de velocidad al límite cósmico que había impuesto la teoría de la relatividad de Einstein. Unos neutrinos, partículas especialmente elusivas, superaron por poco los 299,792.458 kilómetros por segundo a los que viaja la luz, en un recorrido de 730 km a lo largo de la Tierra al laboratorio Gran Sasso. Si bien los físicos advierten que la medición debe de tomarse con cautela, de confirmarse significaría uno de los más profundos sacudimientos hacia los fundamentos con los que se ha construido el edificio de la física moderna —y por lo tanto hacia nuestra realidad.”

La polémica fue grande y, al final, todo se aclaró, se descubrió el error y el Fotón siguió siendo el rey de la velocidad en nuestro Universo. Sin embargo, ¿quién puede negar que existan otros caminos? Si no son los Neutrinos… ¡podríamos ser nosotros! los que, por un medio inesperado, podríamos (no superar pero sí burlar) ir más aprisa que la luz tomando el adecuado camino.

http://pijamasurf.com/wp-content/uploads/2011/09/cosmic-galaxy-.jpg

Siempre he dicho que, el Universo es…, casi tan grande como nuestra imaginación. Si eso es cierto, nuestras mentes a pleno rendimiento (al menos alguna) podría iluminarse con la idea de viajar al otro extremo de la Galaxia primero y, al otro extremo del Universo después. ¿Quién sabe hasta dónde podremos llegar? En realidad, ¿Existen límites? NO, creo que no existe ningún límite y, la Naturaleza tiene todas las respuestas para que nosotros, seres pensantes y conscientes, las podamos encontrar.

Pero, como decía al principio, muchas cosas deben cambiar y, la mentalida de hoy, debe dar paso a nuevas formas y nuevas maneras de ver y mirar hacia nuevos horizontes que la Ciencia nos está señalando con insistencia y que no nos atrevemos a visitar.

emilio silvera

La Fisica, ¡que maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón puede trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).

http://www.elefantepedia.com/wp-content/uploads/2011/10/elefante_raton2.jpg

Cuando llegamos a los seres unicelulares, se ve que para ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala.

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. Esta fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia entre dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del estado líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este trabajo de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido hacia las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

Leer más

Noticias de Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La reproducción de la voz grabada de un directivo de la NASA, que se envió de la Tierra al robot, sonó en el planeta rojo y luego se reenvió de vuelta

Ciencia | 28/08/2012 – 08:50h

El Curiosity envía nuevas imágenes y reproduce la voz humana en Marte

Nuevas imágenes de la geografía de Marte enviadas por el Curiosity LVD

 

Washington. (EFE).- La voz de un ser humano ha surcado hoy por primera vez los cielos desde Marte a la Tierra, y aunque no era una “presencia humana física”, ha supuesto un hito más dentro de la misión del explorador Curiosity, que lleva ya más de 20 días en el planeta rojo. “Hola. Soy Charlie Bolden, Administrador de la NASA, hablando con usted a través de la capacidad de difusión del Curiosity robot, que ahora está en la superficie de Marte”, se escuchó en las instalaciones de la agencia espacial estadounidense (NASA).

“Desde el principio de los tiempos, la curiosidad de la humanidad nos ha llevado a buscar constantemente algo nuevo… Nuevas opciones de vida más allá del horizonte. Quiero felicitar a los hombres y mujeres de nuestra familia de la NASA, así como a nuestros socios comerciales y gubernamentales de todo el mundo por haber dado un paso más en Marte”, continuó la grabación.

Según explicó el mismo Bolden en la cinta, la agencia espera obtener importante información a través del análisis del cráter Gale, que será clave para conocer si Marte fue o será apto para albergar vida. “Curiosity traerá beneficios a la Tierra e inspirará a una nueva generación de científicos y exploradores, mientras se prepara el camino para una misión humana en un futuro no muy lejano “, dijo Bolden en el mensaje grabado acerca de la misión de dos años que llevará a cabo el robot.

La reproducción de la voz grabada de Bolden, que se envió de la Tierra al Curiosity, sonó en el planeta rojo y luego se reenvió de vuelta a la Tierra, se anunció hoy en una rueda de prensa en el Laboratorio Jet Propulsion, en Pasadena, California, junto con nuevas imágenes obtenidas por el explorador con sus diversas cámaras. “Con la presencia de esta voz, se da otro pequeño paso más hacia la presencia humana más allá de la Tierra, y la experiencia de explorar mundos remotos se pone un poco más cerca de todos nosotros”, dijo Dave Lavery, director del programa Curiosity para la NASA.

“A medida que el Curiosity continúe su misión, esperamos que estas palabras sean una inspiración para quien se convierta en el primero en poner un pie sobre la superficie de Marte, y como hizo el gran Neil Armstrong, ponga voz a un paso gigante para la exploración humana”, añadió Lavery al recordar al recién fallecido astronauta

 

El Curiosity envía nuevas imágenes y reproduce la voz humana en Marte

 

Por otro lado, las imágenes más recientes obtenidas con los teleobjetivos que lleva el robot, muestran una escenas de laderas quebradas y erosionadas, con capas geológicas claramente expuestas, con una resolución y nitidez mucho más elevadas que las anteriores.

Michael Malin, investigador principal del proyecto Mastcam, encargado de procesar y analizar las imágenes que llegan desde Marte, aseguró que esa es una de las zonas donde centrarán sus objetivos. “Algunas de las rocas que se observan son redondeadas, algunas angulares, tienen historias diferentes. Es un sitio geológico muy rico a primera vista y pretendemos pasar por él”, explicó.

En las nuevas fotos del cráter, retocadas por la agencia para contrastar más las diferencias de los estratos, se distingue la grava en primer plano y las dunas al fondo, con zonas de arena de diferentes colores, por lo que tienen distinta composición. Durante la conferencia de prensa, el equipo también informó de los resultados de un ensayo en los Análisis de Muestras del Curiosity en Marte (SAM, siglas en inglés), mediante los que miden la composición de las muestras de la atmósfera, el polvo de roca o el suelo.

La cantidad de aire de la atmósfera terrestre que permaneció tras el lanzamiento en el instrumento que recoge las muestras fue mayor de lo esperado, por lo que comenzaron poniéndolo a prueba con un análisis químico del aire terrestre, antes de que analice los gases presentes en Marte. “Los resultados son una confirmación de la hermosa sensibilidad para la identificación de los gases presentes que tiene SAM”, dijo su investigador principal, Paul Mahaffy.

“Estamos contentos con esta prueba y estamos deseando que llegue la siguiente ejecución en unos pocos días cuando podamos obtener datos de Marte”, añadió. Según informó la NASA, el Curiosity ya está enviando más datos de la superficie de Marte que todos los robots juntos enviados por la agencia con anterioridad. El Curiosity, que aterrizó en la superficie de Marte en la madrugada del pasado 6 de agosto, ha enviado cientos de fotografías en blanco y negro y en color que han proporcionado la vista más nítida de Marte conocida hasta ahora.

Leer más: http://www.lavanguardia.com/ciencia/20120828/54341608681/curiosity-imagenes-voz-marte.html#ixzz2826G8QkQ
Síguenos en:  https://twitter.com/@LaVanguardia | http://facebook.com/LaVanguardia