domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los Misterios de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en La Tierra y su energía    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Oklo, óxido de uranio amarillo

En unas minas de uranio en Oklo, Gabón, hace 1.700.000.000 años, se produjeron reacciones en cadena moderadas por agua, y de forma natural se formaron pequeños reactores nucleares. Estudiando este fenómeno podemos aprender algo sobre cómo almacenar residuos nucleares a larguísimo plazo. En relación a este hecho histórico se me ha ocurrido buscar más información y ponerla aquí para ustedes con el título de:

Un Reactor Nuclear Prehistórico

Habiendo leído uno de los libros de John D. Barrow, recordé que en él, por alguna parte, venía recogido un suceso muy interesante que paso a transcribiros corroborando así que, nunca llegamos a conocerlo todo y, en este caso, es la Tierra la que nos ha dado la sorpresa.

“El 12 de Junio de 1972 el doctor Bouzigues, hizo un descubrimiento preocupante, el tipo de descubrimiento que podía tener incalculables explicaciones políticas, científicas e incluso delictivas. Bouzigues trabaja en la planta de procesamiento de combustible nuclear de Pierrelatte, en Francia. Una de sus tantas rutinas consistía en medir la composión de menas procedentes de minas de Uranio próximas al río Oklo, en la antigua Colonia francesa ahora conocida como la República Africana Occidental de Gabón, a unos 440 km de la costa Atlántica.

Una y otra vez comprobaba la fracción de mineral natural que estaba en forma de isótopo de uranio-235 comparada con la fracción en forma de isótopo de Uranio-238, para lo que realizaba análisis de muestras de hexafluoruro de uranio gaseoso. La diferencia entre los dos isótopos es crucial. El Uranio que se da en forma natural y que extraemos del interior de la Tierra está casi todo en forma de Isótopo 238. Esta forma de Uranio no producirá una cadena de reacciones nucleares autosostenidas. Si lo hiciera, nuestro planeta habría explotado hace mucho tiempo.

Para hacer una bomba o una reacción en cadena productiva es necesario tener trazas del isótopo activo 235 de Uranio. En el Uranio Natural no más de una fracción de un 1 por 100 está en forma 235, mientras que se requiere aproximadamente un 20 por 100 para iniciar una cadena de reacciones nucleares. El Uranio “enriquecido” contiene realmente un 90 por 100 del isótopo 235. Estos números nos dejan conciliar un sueño profundo por la noche con la seguridad de que por debajo de nosotros no se va a iniciar espontáneamente una interminable cadena de reacciones nucleares que convierta la Tierra en una bomba gigantesca. Pero ¿quién sabe si en algún lugar habrá más 235 que la media?

Boziguez midió con gran precisión la razón de isótopo 235 frente a 238. Eran comprobaciones importantes de la calidad de los materiales que en última instancia se utilizarían en la industria nuclear francesa. El suyo era un trabajo rutinario, pero ese día de Junio de 1972 su atención a los detalles se vio recompensada. Advirtió que algunas muestras presentaban una razón 235 a 238 de 0,717 por 100 en lugar del valor normal de 0,720 por 100 que se encuentra normalmente en todas las muestras terrestres, en incluso en meteoritos y rocas lunares. Tan exactamente se conocía el valor “normal” a partir del experimento, y tan exactamente estaba reflejado en todas las muestras tomadas, que esta pequeña discrepancia hizo sonar los timbres de alarma. ¿Dónde  estaba el 0,003 por 100 que faltaba de Uranio 235? Era como si el Uranio ya hubiese sido utilizado para alimentar un reactor nuclear de modo que la abundancia de 235 se había reducido antes de haber sido extraído de las minas.

Uranio

La Comisión de Energía Atómica de Francia consideró todo tipo de posibilidades. ¿Quizá las muestras habían sido contaminadas por algún combustible ya utilizado procedente de la planta de procesamiento? Pero no había ninguna prueba de la intensa radiactividad que habría acompañado al combustible usado, y ningún hexafluoruro de Uranio reducido faltaba en el inventario de la Planta.

Pero a poco las investigaciones descubrieron que la fuente de la discrepancia estaba en los propios depósitos naturales del Uranio. Había una baja razón 235 a 238 en las vetas de la mina. Se estudio todo el proceso y recorrido del Uranio desde su extracción hasta su transporte al lugar de destino, y, todo era correcto, nada extraño podía influir en la discrepancia descubierta. El Uranio procedente de la Mina de Oklo era simplemente distinto del que se encontraba en cualquier otro lugar.

Cuando se investigó con detalle el emplazamiento de la Mina pronto quedó claro que el Uranio 235 que faltaba había sido destruido dentro de las vetas de la Mina. Una posibilidad era que algunas reacciones químicas lo hubiesen eliminado mientras dejaban intacto el 238. Por desgracia, las abundancias relativas de Uranio 235 y 238 no se ven afectadas de forma diferente por procesos químicos que hayan ocurrido en el interior de la Tierra. Tales procesos pueden hacer que algunas partes de la Tierra sean ricas en mineral de Uranio a expensas de otras partes al disolverlo y transportarlo, pero no alteran el balance de los dos isótopos que constituyen el mineral disuelto o en suspensión. Sólo las reacciones y desintegraciones nucleares pueden hacerlo.

explosión atómica

Los subproductos de Oklo han sido usados para realizar varios experimentos científicos. Quizás el más famoso sea uno en que se intentó comprobar si las velocidades de desintegración de los isótopos hace 1.700 millones de años eran diferentes a las de ahora (parece que no, pero los resultados no fueron concluyentes).

Poco a poco, la insospechada verdad salió a la luz ante los investigadores. Las vetas bajas en Uranio-235 contenían las pautas características de otros 30 o más elementos atómicos que se forman como subproducto de las reacciones de fisión nuclear. Sus abundancias eran completamente diferentes de las que se dan en forma natural en rocas donde no hubieran ocurrido reacciones de fisión. La reveladora firma de los productos de fisión nuclear se conoce a partir de los experimentos en reactores construidos por el hombre. Seis de estas vetas características de la actividad de un Reactor Nuclear Natural fueron finalmente identificadas en Oklo. Algunos de los elementos presentes, como el neodimio, tienen muchos isótopos pero no todos son productos de la fisión. Los que no son productos de fisión proporcionan por consiguiente una calibración de la abundancia de todos los isótopos antes de que empezaran las reacciones naturales y de este modo nos permite determinar los efectos y tiempos característicos de dichas reacciones.

Sorprendentemente, parecía que la Naturaleza había conspirado para producir un Reactor Nuclear Natural que había generado reacciones nucleares espontáneas bajo la superficie de la Tierra hace dos mil millones de años. Fue este episodio de la historia geológica de Gabón lo que había llevado a la acumulación de productos de fisión en el emplazamiento actual de la misma.

Las primeras reacciones nucleares producidas por el hombre se produjeron el 2 de diciembre de 1942 como parte del famoso Proyectro Manhattan que culminó con la fabricación de las primeras bombas atómicas.”

Después de leer el relato histórico del suceso que, sin ninguna duda, nos revela la certeza y posibilidad de que, en cualquier momento, se pueda producir otro suceso similar de cuyas consecuencias nadie puede garantizar nada, uno se queda preocupado y puede pensar que, aquel suceso, no llegó a más debido a una serie de circunstancias que concurrieron y, desde luego “el ambiente oxidante necesario que aportase el agua requerida para concentrar el uranio fue originado por un importante cambio de la biosfera de la Tierra. Hace dos mil millones de años ocurrió un cambio en la atmósfera, producido por el crecimiento de algas azul-verdosas, los primeros organismos de producir fotosíntesis.”

Claro que eso, sería entrar en otras historias. Sin embargo, no debemos olvidar que, en nuestro planeta, todo está relacionado y por lo tanto, los cambios y mutaciones que se puedan producir en la Naturaleza de la misma, influyen, de manera irreversible, en todo lo demás.

Esperemos que ningún Reactor Nuclear Natural se vuelva a poner en marcha, ya que, de ser así, no sabemos si se darán las precisas condiciones necesarias para que no continúe indefinidamente su actividad y nos mande a todos al garete.

¡La Naturaleza! que no nos avisa con el tiempo suficiente de lo que piensa hacer mañana y, el ejemplo más cercano lo tenemos con el terrible terremoto acaecido en el territorio de los antiguos mayas.

emilio silvera

 

 

Un buen físico sin suerte: Paul Ehrenfest

Autor por Emilio Silvera    ~    Archivo Clasificado en Personajes ilustres    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Arriba la fotografía del joven Paul Ehrenfest (18 enero 1880 a 25 septiembre 1933) fue un físico austriaco y holandés, quien hizo importantes contribuciones al campo de la mecánica estadística y su relación con la mecánica cuántica, incluyendo la teoría de la transición de fase y el teorema de Ehrenfest. Trabajó y ayudó a los físicos más importantes. Einsten decía de él:

“Ehrenfest no era solamente el mejor maestro en neustro profesión que yo haya conocido; también estaba apasionadamente preocupado por el desarrollo y el destino de los hombres, especialmente de sus estudiantes. Entender a los demás, ganar su amistad y cinfianza, ayudar a cualquiera enzarzado en luchas externas o interiores, animar el talento joven; todo esto era su elemento real, casi más que su inmersión en problemas científicos.”

Estudiantes de Ehrenfest, Leiden 1924. De izquierda a derecha: Gerhard Heinrich Dieke , Samuel Abraham Goudsmit , Jan Tinbergen , Paul Ehrenfest, Ralph Kronig , y Enrico Fermi

Paul Erhrenfest era un santo Tomás dubitativo, pero era de sí mismo de quien dudaba. era un físico austríaco de mucho talento que trabajo con muchos de los máximos nombres de la ciencia a proncipios del siglo XX: Einstein, Heisenberg, Pauli, Dirac, todos se beneficiaron de su ayuda. Por encima de todo era un crítico incisivo, capaz de señalar los puntos débiles de cualquier argumento: la conciencia de la física. También era famoso por suis comentarios, como: “¿Por qué tengo tan buenos estudiantes? Porque soy muy estúpido”. O, “¿Usted dice eso por principio o sólo porque resulta que es cierto?”.

Image of Casimir, et al

Left to right: Hendrik Casimir (kneeling), Bart Bok, George Uhlenbeck, Samuel Goudsmit, Paul Ehrenfest, Mrs. Jaantje Logher Goudsmit, Enrico Fermi and Mrs. Else Uhlenbeck (sitting in front of Casimir). Credit: AIP Emilio Segrè Visual Archives.

Ehrenfest hizo importantesd contribuciones a la física en varias áreas y los estudiantes de licenciatura que estuan mecánica cuántica llegan invariablemente al “teorema de Ehrenfest”. Pero los niveles exigidos por Ehrenfest eran tan elevados que ni el podía estar a la altura. A pesar de la alta estima en que otros lo tenían y que le llevó a ser invitado a ocupar la cátedra de física de Leiden en 1912, cuando sólo tenía 32 años, Ehrenfest sufría de baja autoestima. Llegó a estar frustrado por su incapacidad de seguir el rápido ritmo de los desarrollos en la física cuántica y su Naturaleza cada vez más metafísica,

Einstein y Ehrenfest creían en una realidad objetiva inteligible para el hombre y en las leyes causales, y se opusieron de forma enérgica a la mecánica cuántica; Born y Bohr fueron los creadores de las concepciones más importantes contrarias a la causalidad y a la inteligibilidad, e incluso limitaron de un modo considerable la relevancia del concepto de realidad física. El caso de Schrodinger era más complicado, aunque rechazaba también la síntesis cuántica elaborada por Bohr. Todos ellos se opusieron al nazismo, aunque tenían diferentes opiniones políticas.

Ehrenfest dirigía seminarios los martes en la Universidad de Leyden en donde intervenían los grandes científicos de la época. Allí nació y se consolidó la hipótesis sobre el spin del electrón, y Ehrenfest fue su impulsor. También intervino como iniciador y organizador de la famosa polémica entre Bohr y Einstein.

Paul Ehrenfest dejó tras de sí ideas físicas que sobrevivieron la memoria de sus discípulos y amigos. Tendió un puente sobre el abismo que en la mente de sus contemporáneos separaba los fenómenos cuánticos de los clásicos por medio del conocido teorema de Ehrenfest, propuesto en un artículo en 1927. En él radica la esencia del principio de correspondencia que en 1918 formuló Niels Bohr.

Hay cuetiones y situaciones en la vida de una persona que, se tienen que vivir para poder comprender hasta que punto se puede uno ver afectado por los hechos y, si además, resulta que no eres de un carácter fuerte, las cosas se agravan hasta llegar a lo inevitable. El carácter apocado de este personaje se ahondó, exacerbado por los graves problemas mentales de su hijo Wassik, con síndrome de Down. Ludwig Boltzmann, que fue supervisor de Ehrenfest, se había suicidado en 1906 desesperado por la falta de reconocimiento de su trabajo, Paul Ehrenfest hizo lo mismo el 25 de Septeimbre de 1933, pegándose un tiro después de haber disparado a su hijo en la sala de espera del médico.

Ehrenfest demostró que en mundos con más de tres dimensiones no podían existir átomos estables en absoluto. O bien los electrones caían al núcleo en una trayectoria espiral o bien se dispersaban. Tambioén advirtió que las ondas tridimensiopnales tienen propiedades muy especiales. Sólo en tres dimensiones viajan las ondas en el espacio libre sin distorsión o reververación. El el mundo de dimensiones del espacio es par (dos, cuatro, seis…), entonces las diferentes partes de una perturbación ondulataria viajan a velocidades diferentes.

Como resultado, si la emisión ondulatoria es continua habrá reververación en el receptor: ondas que salen en distnates diferentes llegarán al mismo tiempo. Si el número de dimensiones del espacio es un número impar, todas las perturbaciones viajan a la misma velocidad, pero si hay tres dimensiones la onda se distorsionará cada vez más. Las omndas tridimensionales son especiales.

El imaginativo estudio de Ehrenfest demostraba que las dimensiones del mundo tiene un efecto de largo alcance sobre cómo son las cosas. Los mundos tridimensionales son muy inusuales. Imponen propiedades espciales a las leyes y constantes de la Naturaleza.

Pese a todo, Ehrenfest no fue más lejos en 1917 y no extrajo conclusiones filosóficas especiales de sus resultados. No fue el primero en advertir que había algo especial en las órbitas planetarias en mundos tridimensilaneles.

William Paley había explicado ya en 1802 las características únicas en apoyo de la Ley inversa del cuadrado de la gravedad, y el examen que hizo Vallace en 1905 en su libro El lugar del hombre en el Universo habían reiterado estas características especiales. Pero estos autores habían escrito anteas de que hubiera surgido la teoría cuántica de la materia y Ehrenfest podía hacer un razonamiento mucho más completo y más profundo sobre la singularidad física de los mundos tridimensionales.

Paul Ehrenfest

Como profesor de la Universidad de Leiden en Holanda, Ehrenfest aplica un poco el pragmatismo estadounidense que asimiló en sus viajes a América, y crea un enlace entre los académicos y los ingenieros en pro del desarrollo industrial del país. El laboratorio experimental de la empresa Philips, por ejemplo, fue alimentado por alumnos de Leiden.

Asimismo, gradúo a varios físicos que resultaron valiosos no sólo en el campo de la física. Por ejemplo, Jan Tinbergen, alumno de Ehrenfest, aplicó conceptos de la termodinámica a la economía y se hizo acreedor al primer Premio Nobel de Economía en 1969.

Resumen

En los orígenes de la física cuántica, a principios del siglo XX, la asimilación y maduración de las nuevas teorías requirió del establecimiento de vínculos con sus antecesoras, antes de poder desprenderse de ellas y formar una nueva estructura totalizadora de comprensión en esta disciplina. Se han escrito artículos analizando el papel que jugó Paul Ehrenfest en una parte de ese proceso. Por una parte hay que destacar el paralelismo de sus investigaciones con las de Niels Bohr, mostrando cómo el trabajo conjunto de ambos nos permite argumentar en favor de la continuidad conceptual en el desarrollo de teorías científicas. Sin embargo, también se muestra que dicha continuidad tiene un límite. En este caso también podríamos hablar del análisis que Paul Ehrenfest y Albert Einstein hacen del experimento de Stern–Gerlach para mostrar que, en una revolución del conocimiento, al final surgen en verdad nuevos paradigmas con los que finalmente las nuevas teorías se desprenden de las anteriores.

Hay personajes que pudieron llegar a la más  alta cumbre científica y, sin embargo, por su caracter, las circuntancias de sus vidas y otros elementos que no pudieron soslayar, le dejaron casi… en el anonimato y, algunos, como es el caso de nuestro personaje de hoy, dejó al menos, una muestra de su talento.

emilio silvera