Nov
20
Esa gran disciplina: La Mecánica cuántica
por Emilio Silvera ~ Clasificado en Física ~ Comments (18)
El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.
Esta espectacular aurora boreal fue captada sobre la aldea de Ersfjordbotn cerca de Tromso, en el norte de Noruega, en el amanecer del 21 de febrero. Las auroras son causadas por la interacción entre las partículas energéticas cargadas del Sol y las moléculas de gas en la atmósfera superior de la Tierra, a unos 100 kilómetros de altura.El viento solar exhalado por el sol con especial volumen hace poco a una velocidad de aproximadamente 500 kilómetros por segundo colaboró en la espectacularidad en este caso.
Al llegar a la Tierra, las partículas cargadas son atraídas por el campo magnético terrestre en los polos, donde chocan con las moléculas de gas en la atmósfera superior, haciendo que emitan luz.
El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.
Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cerca del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.
rayos cósmicos contra las células
Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.
erupciones solares
Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había aducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.
En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.
Abajo hay una imagen que ilustra a la Heliosfera, la parte del espacio que está directamente afectada por el Sol a través del viento solar. Es la estructura magnética del viento solar quien hace de escudo contra las enérgicas partículas de los rayos cósmicos. Las variaciones en el viento solar (o en la actividad solar) cambia el flujo de los rayos cósmicos que llegan hasta la Tierra.
Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.
Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.
Primer Congreso Solvay (1911), financiado por el “rey de la sosa cáustica”, el belga Ernest Solvay y en el que tomaron parte todas las luminarias de la ciencia. Nernst, Poincaré, Langevin, Rutherford, Lorentz, Planck y Marie Curie están en primera fila de la fotografía y no es difícil reconocer a Einstein junto a ellos. Terminado el Congreso, Marie relató a Louis de Broglie los debates sobre el fotón y su naturaleza dual, de onda y partícula. De Broglie, ante los resultados de Compton, se preguntaba en la tesis doctoral que presentó en 1924 si acaso la inversa del efecto Compton sería cierta: si las ondas son partículas ¿no serán ondas las partículas? Al recibir el premio Nobel en 1929, Louis de Broglie diría: “Para ambas, materia y radiación, la luz en especial, es necesario introducir los conceptos de partícula y de onda a la vez. En otras palabras, se tiene que suponer siempre la existencia de partículas acompañadas por ondas.”
Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.
Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.
1936. Victor Franz Hess & Carl David Anderson
Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.
Arriba teneis el proceso conocido como triple alfa: Una maravilla de la que se vale la Naturaleza para fabricar el Carbono.
Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:
aluminio 27 + helio 4 = silicio 30 + hidrógeno 1
Nótese que los números másicos se equilibran:
27 + 4 = 30 + 1
Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.
Joliot – Curie
Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.
núcleos de hidrógeno pesado.
El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.
Reacciones de fusión nuclear
Reacciones de deuterio – tritio:
Esta es una de las dos reacciones de fusión nuclear más básicas que se conocen: en ella intervienen como reactivos un núcleo de deuterio (D) y uno de tritio (T). Si dichos reactivos se aproximan entre sí a velocidades adecuadas, se unen formando un núcleo compuesto (centro), que es inestable y se desintegra rápidamente produciendo un núcleo de helio (He) y un neutrón. El proceso de formación del núcleo compuesto se denomina fusión nuclear (de deuterio y tritio en el caso que estamos considerando). El tritio es radioactivo, el deuterio no. Esta es una de las dos reacciones de fusión nuclear más básicas que se conocen: en ella intervienen como reactivos un núcleo de deuterio.
El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:
hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1
Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión a 20’5º K.
Reacciones de deuterio – deuterio:
En ella, dos núcleos de deuterio se fusionan formando un núcleo compuesto inestable (centro) que rápidamente decae siguiendo uno de dos posibles caminos: el ilustrado en la parte superior, que produce un núcleo de helio y un neutrón; y el indicado en la parte de abajo, donde se produce un núcleo de tritio y un protón. El camino que seguirá el núcleo compuesto para decaer, es impredecible con exactitud. Sólo puede afirmarse que el 50% de las veces, la naturaleza sigue el de arriba, y el 50% restante, el de abajo.
Reactor de fusión Tokamaka
Instalaciones donde se produce la fusión nuclear: Lograr fusión nuclear en la Tierra es complicado: se requieren reactores especiales.
Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.
Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.
Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-Dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.
Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.
Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.
El Spín
El Spín es una propieded intrínseca de las partículas elementales, es una propiedad física, esta propiedad fué introducidad por Ulembeck y Gouldsmith, descubrieron el spín del electrón, que hace referencia a sus propiedades de giro. Su valor está cuantizado, es decir solo puede tener como valor números enteros o semienteros. Para electrones, protones y neutrones este valor es de 1/2. Existen otros valores para otras partículas elementales, las matrices de Pauli nos dicen conceptos del spin del electrón.
En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.
Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.
Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).
Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas.
¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.
Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.
emilio silvera
el 8 de marzo del 2009 a las 21:58
Hola Emilio:
Respecto al magnetismo del neutrón se me ocurre que probablemente hay que atribuirlo a su naturaleza compuesta. El neutrón aunque no lo parece está compuesto de un protón y de un electrón, ambos con carga eléctrica. No lo parece porque están muy compenetrados. ¿Consideras correcto el razonamiento, Emilio?.
Un abrazo. Ramon Marquès
el 20 de noviembre del 2012 a las 18:46
Esa continua transformación también es una forma de explicar la unión del nucleo. Sin embargo en un instante determinado la decantación es hacia uno u otro por lo que es necesaria la fuerza fuerte residual.
La continua transformación daría como resultado una oscilación de carga, según los quarks presentes en cada momento. La decantación al magnetismo generado será una resultante.
Y ya no sé más, amigo Ramón. Un abrazo.
el 9 de marzo del 2009 a las 6:37
LO considero de lo más correcto, y, como dices, cuando en una estrella masiva se agota el combustible nuclear y queda a merced de la fuerza gravitatoria, ésta la comprime tanto que los protones y electrones se juntan para formar neutrones, dando así lugar a que se forme la estrella del mismo nombre.
Entonces los neutrones se degeneran y evitan que la estrella se siga comprimiendo bajo el peso de su propia masa.
Así que, amigo Ramón, llevas toda la razón y, además, no olvides el spín.
Un saludo amigo.
el 17 de octubre del 2011 a las 21:20
Emilio: Me ha encantado esta síntesis tan clara que has hecho. ¿Me das permiso para usarla en mis clases?…
Sigues siendo maestro de maestros.
Saludos cariñosos.
el 18 de octubre del 2011 a las 6:13
Amiga mía, siempre es grato el saber que has estado por estos pagos, y, como siempre, tengo que decirte que todo lo que en esta página aparezca es de todos y a la disposición de todos esta. Ya sabes que nuestro saber es poco, y, ese poco, lo hemos cogido de los demás (Profesores, libros, amigos, conferencias, revistas especializadas, etc.) y, así, hemos podido desarrollar nosotros nuestros propios criterios sobre ésta o aquella disciplina y, si en algún momento, lo que podamos decir o pensar puede servir para que otros aprendan, mejor que mejor.
Amiga Silvia, creo que tus chicas/cos tienen mucha suerte de tener una Profesora que, como decíamos antes, tiene esa vocación que lleva a una persona hacia la enseñanza, no todos sirven para eso. El tener un título no es suficiente para poder enseñar a otros, hace falta un plus que no se estudia ni se aprende en la Universidad, ese plus, está o no está en la persona y, cuando lo tiene, ejerce su labor sintiéndolo y, los jóvenes (que no tienen un pelo de tontos), captan “eso” y, lo que les transmite su profesora/profesor, les llega y perdura en ellos.
Para terminar te diré que, sigo siendo un buen alumno (como diría Crusellas, un aprendíz), ya que, es tánto lo que nos queda por saber que, nunca podemos estar satisfechos de lo poco que sabemos.
Un cordial y respetuosa abrazo.
el 21 de noviembre del 2012 a las 20:15
Amigo Emilio y amigo Fandila:
Un abrazo y me sale del corazón deciros que sabéis muchísimo. Ramon Marquès
el 22 de noviembre del 2012 a las 5:41
¡Hola, amigo Ramón!
Pero hombre, ¿quién sabe de verdad? lo podemos dejar en que tenemos algunos leves conocimientos y que (eso sí) tratamos sin descanso de aprender lo que la Naturaleza nos enconde y que incansables perseguimos. De ahí a saber, lo que se dice saber…hay un gran trecho.
De todas las maneras, compartir con los amigos es agradable y, de camino, aprendemos alguna cosa que sabíamos.
Un abrazo,.
el 24 de noviembre del 2012 a las 13:25
Hola Ramón, leyendo esto de pasada me he parado en una de tus frases y me gustaría hacer un matiz o más bien una corrección.
Donde dices que el neutrón se compone de un protón y un electrón no es cierto y para que no haya confusión lo explico brevemente.
El neutrón se compone de tres quarks (up/down/down) pero cuando se desintegra (desintegración Beta) lo hace en un protón (quarks up/up/down) más un electrón más un antineutrino. Esto no significa que estuviese compuesto por estas partículas, sino que se desintegra creándolas. En definitiva, lo que le pasa el neutrón es que uno de los quarks cambia su carga de sabor, y esto, para que el balance energético/masa, de spin y de carga queden conservados la reacción produce estas otras partículas.
Pero el neutrón se compone de esos tres quarks que no se pueden liberar de forma independiente. En la Naturaleza no se pueden encontrar quarks libres, sólo por parejas (hadrones) o de tres en tres (bariones).
Espero haberme explicado bien, un neutrón no se compone de protón + electrón. Se compone de 3 quarks.
Saludos!
el 25 de noviembre del 2012 a las 6:55
¡Cierto!
Y, cuando dices: “En la Naturaleza no se pueden encontrar quarks libres, sólo por parejas (hadrones) o de tres en tres (bariones).” Me permito una pequeña matización. Cuando dices Hadrones te refieres a mesones y bariones, los primeros formados por dos quarks y los segundos por tres.
El neutrón recuerda al protón como si fueran hermanos gemelos: sus masas son prácticamente las mismas, el espín también y además los diferencias que mientras el protón está cargado positivamente el neutrón no tiene carga.
Bueno, lo cierto es que hay otras diferencias, la mayoría de los núcleos atómicos contienen más neutrones que protones y, por otra parte, los protones están tan juntos dentro del núcleo que se repelen al tener cargas iguales. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más intensa que la fuerza electromagnética: la interacción fuerte.
Es perfeta y viene muy bien tu explicación, cuando dices: “El neutrón se compone de tres quarks (up/down/down) pero cuando se desintegra (desintegración Beta) lo hace en un protón (quarks up/up/down) más un electrón más un antineutrino. Esto no significa que estuviese compuesto por estas partículas, sino que se desintegra creándolas. En definitiva, lo que le pasa el neutrón es que uno de los quarks cambia su carga de sabor, y esto, para que el balance energético/masa, de spin y de carga queden conservados la reacción produce estas otras partículas.”
¿No es asombroso? ¿Cómo en una cosita tan pequeñita se pueden producir tales maravillas? lLa Naturaleza! que nunca dejará de sorprendernos.
Otra diferencia entre el protón y el neutrón es su vida media, mientras que el neutrón tiene una vida (en promedio) de un cuarto de hora, el protón es “inmortal”, nunca se ha podido observar la desintegración de ningún protón.
Esto de la vida media de las partículas es curioso. La mayoría de las partículas tienen una vida media de 10-8 segundos y eso significa que son ¡extremadamente estables! La función de onda interna oscila más de 1022 veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10-8 x 1022, que es 1014 0 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con seguridad que la interacción responsable de tal desintegración es extremadamente débil.
La desintegración del neutrón también se puede atribuir a la interacción débil. La energía se almacena en la masa de las partículas segín la bien conocida fórmula E =mc2. Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento.
¡Cómo me enrollo! Siempre me pasa lo mismo, cuando ví tu explicación me vinieron un sin fin de ideas a la cabeza y, se atropellan las unas a las otras queriendo salir fuera, a la luz…
Lo cierto es que, no pocas veces, como ha resultado ser con tu comentario aclaratorio, muchos nos podemos enterar de cosas…interesantes.
Un saludos amigos.
el 25 de noviembre del 2012 a las 18:44
Es lo que pasa cuando se responde y escribe más rápido que se piensa 😀
Los Hadrones los hay de dos tipos: Mesones (quark+antiquark) y Bariones (tres quarks).
Gracias Emilio
Saludos!!
el 24 de noviembre del 2012 a las 21:34
Hola amigo Zephyros:
Lo has explicado perfectamente bien y estoy completamente de acuerdo. Lo que pasa es que yo cuando dije que un neutron equivalía a un protón más un electrón quería decir que el electrón estaba potencialmente dentro del neutrón, y esto se presta a confusión, lo entiendo.
Gracias, Zephyros, por la explicación que refresca la memoria, y recibe un fuerte abrazo. Ramon Marquès
el 24 de noviembre del 2012 a las 23:40
Algún día de estos se conseguirá desgajar un quark, y seguramente aparecerán otras partículas aún más pequeñas, que recibirán nombres igual de peregrinos que ellas: “Salchicha de Frankfourt” o “jamón de recebo”, por ejemplo.
Con ello solo presento mi modesta protesta por los nombres tan peculiares que se han dado a los quarks; seguramente se tendrá sus motivos, pero creo recordar que para que algo se nos quede en la memoria lo mejor es que sea fácil el nombre dado para cogerlo con un simil(clip) ; pero nada, esos sesudos científicos que le dieron los nombres pareciera que habían tomado alguna copa de más ese día, o algo peor (Arriba, abajo, extraño, etc, nombres completamente divergentes y nada asimilativos.); aunque ahora recuerdo que algunos nombres, cuanto más raros, al final son los que más se te quedan en la cabeza, como Sinforoso, Anacleto, Recesvinto o el famoso mallorquín Práxedes….;C
Feliz finde.
el 24 de noviembre del 2012 a las 23:56
Estoy de acuerdo con kike. Antes de llamar a un quark “Encanto” prefiero un nombre que no despiste. Voto que el próximo quark que se encuentre se llame Carpanta!!!
el 25 de noviembre del 2012 a las 7:07
El peligro de poner ese nombre está en que…¡se puede comer a sus hermanos!
el 25 de noviembre del 2012 a las 18:46
jeje propuesta española al nombre de los tres próximos quarks:
– Carpanta
– Anacleto
– Mortadelo
el 25 de noviembre del 2012 a las 7:00
¡Se apoya la moción!
De todas las maneras, cuando Gell Mann le puso el nombre a “sus Quarks” lo hizo de manera totalmente caprichosa y no relacionada con nada que tuviera que ver con lo que éstos infinitesimales objetos querían significar. En tros casos, los nombres sí tienen sentido: Protón, neutrón, leptón…
Algunas veces parece como si, algunos, quisieran volver loco al personal.
¡Qué cosas!
el 25 de noviembre del 2012 a las 22:22
Y al CSIS, “Rue del Percebe, 13”.
A las enanas binarias “Zipi y Zape”
A los agujerois negros “Rompetechos”
el 26 de noviembre del 2012 a las 4:12
¿Y Doña Urraca y el Reporte Tribulete? ¡Vamos hombre, no tiene perdón el olvido!
Aparte que, Carpanta, debe ser un Agujero Negro que todo se lo traga.
Un abrazo amigos.