domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡¡Viajar en el Tiempo!!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Viajar en el Tiempo! ¿Podremos?    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Representación tridimensional del futuro causal y el pasado causal  de un auceso. El suceso en cuestión es el vértice central del punto de vista de la luz (azul) donde se unen el cono superior y el inferior. Todos los puntos dentro del cono superior son su futuro causal, todos los puntos en el cono inferior son su pasado, el eje vertical (rojo) representa el avance del tiempo y las dos flechas horizontales dos direcciones espaciales.
Lo cierto es que especular con la posibilidad de viajar en el Tiempo es arriesgado. Si los medios de comunicación supieran que algunos Gobiernos están dedicando grandes inversiones a investigar sobre esta posibilidad, se produciría un gran clamor por tal despilfarro con la que está cayendo. Sin embargo, algunos científicos creen firmemente en tal posibilidad y, ya sabéis… los militares por si acaso… Y disfrazan lo que están haciendo utilizando términos técnicos como “curvas cerradas de género tiempo”, que es simplemente una expresión en clave para el viaje en el tiempo.
            Lo cierto es que, tomemos el camino que podamos tomar, siempre nos llevará hacia el futuro
En realidad todas las partículas viajan continuamente hacia el futuro, ya que el tiempo fluye siempre en la misma dirección, y el paso del tiempo es sólo el movimiento hacia el futuro, en los términos en que los describe la teoría de la relatividad. Sin embargo, el flujo de avance hacia el futuro puede ser algo lento para la duración de la vida humana. Para conocer lo que sucederá mañana, sólo tenemos que esperar un día sin necesidad de desplazarnos, pero conocer el futuro lejano y, por ejemplo, conocer a nuestros tataranietos o contemplar la civilización dentro de mil años, es diferente. El efecto relativista de la dilatación del tiempo nos ofrece, al menos teóricamente, la posibilidad de viajar al futuro evitando envejecer.
Los Agujeros de gusano, si en realidad existen, serían ideales para viajes espaciales rápidos y al margen de la velocidad de la luz. No iríamos viajando por el espacio tradicional, sino que, inmersos en una especie de hiperespacio nos trasladaríamos de un lugar a otro muy lejano en tiempo muy breve. Podríamos visitar a nuestro hijo mayor que vive en el otro extremo de la Galaxia y volver a casa para la cena. Sin embargo, se puede demostrar que, si existen agujeros de gusano, también podrían utilizarse para regresar antes de haber partido. Entonces cabrían tçamtas posibilidades imposibles que, me llevan a pensar que los agujeros de gusano no deben existir. ¡Sería una locura!
Por supuesto todas esas paradojas que se pueden crear con los viajes en el tiempo serían posibles sólo si creemos que ciertamente, tenemos libre albeldrio para poder hacer lo que queramos cuando estemos, por ejemplo, en el pasado. No quiero plantear aquí ninguna duiscusión filosófica sobre lo que piendo del libre albedrío, pero creo que, si algún día pudiéramos viajar hacia atrás en el tiempo no podríamos cambiar nada de lo que ya pasó y está registrado en los anales de la Historia. Lo que pasó es inamovible. ¡Ay! si pudiéramos cambiar ¡tántos errores cometidos!
Pero, ¿permiten las leyes de la física que el espacio-tiempo esté tan curvado que un cuerpo macroscópico, tal como una nave espacial, pueda volver a su propio pasado? Según la teoría de Einstein, una nave espacial viaja necesariamente a una velocidad menor que la velocidad local de la luz, y sigue lo que se denomina  una “curva de género tiempo” a través del espaciotiempo. Así pues, podríamos formular la cuestión en términos técnicos: ¿admite el espaciotiempo curvas de género tiempo que sean “cerradas”, es decir, que regrese a su punto de partida otra vez?
Podemos tratar de responder a esta cuestión en tres niveles. El primero es la teoría de la relatividad de Einstein. Ésta es lo que se denomina una “teoría clásica”. Es decir, supone que el universo tiene una historia bien definida, sin ninguna incertidumbre. De la relatividad general clásica tenemos una imagen bastasnte completa. Sabemos, sin embargo, que la teoría clásica no puede ser completamente correcta, porque observamos que la materia del universo está sometida a fluctuaciones, y su comportamiento no puede predecirse exactamente.
Cono de luz del Espacio-Tiempo: En él se representa el espacio-tiempo posibles para un evento dado. La zona superior representa los futuros posibles del evento, mientras que la inferior representan las causas posibles del mismo. Los puntos espacio-temporales fuera del cono son inobservables.
En la década de 1920 se desarrolló un nuevo paradigma denominado “teoría cuántica” para describir estas fluctuaciones, para cuantificar la incertidumbre. Podemos así plantear la pregunta sobre el viaje en el tiempo en un segundo nivel, denominado “teoría semiclásica”. En éste, los campos cuánticos de materia son considerados en un fondo espaciotemporal clásico. Aquí la imagen es menos completa, pero al menos tenemos cierta idea de cómo proceder.
Finalmente, está el nivel de la teoría cuántica completa de la gravedad, cualquiera que pueda ser. Aquí no está ni siquiera claro cómo plantear la pregunta, ¿es posible el viaje en el tiempo? Quizá lo mejor que uno puede hacer es preguntar cómo interpretarían sus medidas los observadores en el infinito. ¿Creerían ellos que había tenido lugar el viaje en el tiempo en el interior del espaciotiempo?
Lo cierto es que, por medios convencionales, nunca podremos viajar en el tiempo. Uno puede preguntarse cuán rápido debe moverse para que el tiempo de un observador pudiera marchar hacia atrás con relación al tiempo de otro observador. Todo lo que necesitamos para viajar en el tiempo es una astronave que vaya más rápido que la luz. Desafortunadamente, está más que demostrado que la energía necesaria para acelerar a una astronave crece cada vez más y más, a medida que se acerca a la velocidad de la luz. Así que se necesitaría una cantidad infinita de energía para acelerar más allá de la velocidad de la luz:

Demostración: Dada la famosa ecuación E=mc². Si c representa la velocidad de la luz, la cual es de aproximadamente 300.000km/seg, para acelerara una masa de tan solo 1kg hasta dicha velocidad se necesitaria una energia de 90000000000000000Newton!! Pero ojo!la masa es masa relativa, no en reposo, y entonces, para la energía total se tiene

 

donde v es la velocidad del móvil. Si reemplazamos ahora este valor en la ecuación de Einstein se observa entonces que cuando dicha velocidad alcanza la de la luz, el denominador es 0 y por tanto la energía es infinita. Es importante notar que la Ecuación de Einstein expresada así E=mc², donde la masa es masa relativa, no representa la equivalencia masa-energía o energía en reposo, sino la energía total de un cuerpo en movimiento.

 

El artículo de Einstein de 1905 parecía eliminar la posibilidad de viajar hacia el pasado. También indicaba que el viaje espacial hacia otras estrellas sería un asunto lento y tedioso. Si uno no podía viajar más rápido que la luz, el viaje de ida y vuelta hasta la estrella más cercana tomaría por lo menos ocho años, y hasta el centro de la galaxia un mínimo de ochenta mil años. Si la nave viajara muy cerca de la velocidad de la luz, podría parecerle a la tripulación abordo de la misma que el viaje al centro galáctico hubiera durado solamente unos pocos años (por el concepto de dilatación del tiempo). Pero eso no sería de mucho consuelo, si cuando volvieran a casa todos los que hubieran conocido hubieran estado muertos y olvidados hace miles de años.
Siendo todo eso así (que lo es), no tendremos más remedio que buscar otros caminos diferentes, no ya para viajar en el tiempo, sino simplemente para viajar hacia las estrellas dentro de nuestro espaciotiempo, toda vez que, en un futuro aún  lejano, necesitaremos desplazarnos hacia otros mundos y, ¿por qué no? otras galaxias? y, por los medios convencionales…¡nunca podremos!
Podríamos hablar aquí de de cuerdas cósmicas que se están miviendo a velocidades cercanas a la de la luz y donde el ahorro de tiempo al dar una vuelta alrededor de dos de ellas podría serr tan grande que uno volvería antes de haber partido. En otras palabras, existen curvas cerradas de género tiempo que uno podría seguir para viajar al pasado.
Los espaciotiempos de las cuerdas cósmicas contienen materia que tiene densidad de energía positiva y es físicamente razonable. Sin embargo, la distorsión que produce curvas cerradas de género tiempo se extiende hasta el infinito, y hacia atrás al infinito pasado. Así pues,  estos espaciotiempos ya estaban creados con viaje en el tiempo en ellos. No tenemos ninguna razópn para creer que nuestro propio universo fuera creado de una forma tan distorsionada, y no tenemos evidencias fiables de visitantes del futuro a pesar de los avistamientos OVNIS y de algunas huellas del pasado que, no pocas veces, hemos querido imputar su autoría a esos visitantes. Así que, supondré que no hay curvas cerradas de género tiempo en el pasado de cierta superficie de tiempo constante, S.
La pregunta entonces es, ¿podría alguna civilización avanzada construir una máquina del tiempo? Es decir, ¿podría dicha civilización modificar el espacio tiempo en el futuro de S, de modo que aparezcan curvas cerradas de género tiempo en una región finita?
http://3.bp.blogspot.com/_BISlQrG8YZ0/S7GJ3NxjadI/AAAAAAAAAFA/Q_YZ6l6n5Hw/s1600/325927_LIQIBPDSMNVHYQU.jpg
Digo “una región finita” porque, por muy avanzada que pudiera haber llegado a estar la civilización, presumiblemente sólo podría llegar a controlar una parte finita del Universo.  En ciancia, encontrar la formulación correcta de un problema es a menudo la clave  para resolverlo, y este es un buen ejemplo. Para definir lo que se entiende por máquina del tiempo finita tendríamos que ver el desarrollo de Cauchy futuro de S como un conjunto de puntos del espaciotiempo en donde los sucesos están completamente determinados por lo que sucede en S. En otras palabras, es la región del espaciotiempoen donde cualquier posible trayectoria que se mueve a velocidad menor que la de la luz procede de S.
Claro que crear un  horizonte de Cauchy semejante requeriría o bien ser capaz de distorsionar el espaciotiempo hasta el infinito o bien tener una singularidad en el espaciotiempo. Distorsionar el espaciotiempo hasta el infinito estaría más allá de las posibilidade incluso de la civilización más avanzada, que sólo sería capaz de distorsionar el espaciotiempo de una región finita. La civilización avanzada podría reunir suficiente materia para causar un colapso gravitatoria que produciría una singularidad espaciotemporal, al menos según la relatividad general clásica. Pero las ecuaciones de Einstein no pueden definirse en la singularidad, al llegar allí, hacen mutis por el foro, de modo que no podrían predecir lo que sucedería más allá del horizonte de Cauchy y, en particular, si habría o no curvas cerradas de gémnero tiempo.
Dibujo20090615_Godel_universe_light_cones_general_relavity_and_spacetime_map
Así que, a pesar de todos nuestros conocimientos, nada está tan claro como para afirmar algunas posibilidades que “podrían ser” y no están negadas por las teorías físicas actuales.  Acordémonos de que Un libro celebraría el 70 cumpleaños de Einstein en 1949. Gödel decidió escribir un artículo en el que resolvería un problema planteado por Gamow en la revista Nature en 1946. Le costó casi 3 años de trabajo, pero valió la pena. Un modelo cosmológico para un universo en rotación consistente con la relatividad general en el que una persona puede viajar a su propio pasado. Un problema que sólo un genio podía resolver, el regalo ideal para su amigo Einstein, con quien gustaba pasear en Princeton. El artículo fue enviado por Gödel al editor del libro, Schilpp, justo en el último momento (tras varias cartas de disculpa por el retraso). La historia del modelo cosmológico de Gödel nos la cuenta magistralmente Wolfgang Rindler, quien ya la contó en una conferencia en 2006 celebrando el centenario del nacimiento del propio Gödel, en el artículo que recomiendo “Gödel, Einstein, Mach, Gamow, and Lanczos: Gödel’s remarkable excursion into cosmology,” American Journal of Physics 77: 498–510, June 2009. (Imagen y párrafo tomado de Francis (th)E mule Science’s News).
Cuando trato estos complejos temas y llegamos a callejones sin salida que nuestros intelectos no pueden resolver, caigo en la cuenta de que, antes, otros estuvieron en la misma encrucijada. Acordaos:
“Otro descubrimiento del siglo XIX que se consideró abstracto e inútil en su tiempo fue la geometría no euclídea. En esta geometría se pueden trazar al menos dos rectas paralelas a una recta dada que pasen por un punto que no pertenece a ésta. Aunque descubierta primero por Gauss, éste tuvo miedo de la controversia que su publicación pudiera causar. Los mismos resultados fueron descubiertos y publicados por separado por el matemático ruso Nikolái Ivánovich Lobachevski y por el húngaro János Bolyai.”“En la geometría encuentro ciertas imperfecciones que considero la razón por la cual esta ciencia, a parte de ser transición a lo analítico, no puede avanzar más allá del estado en que llegó a nosotros desde Euclides.  Entre estas imperfecciones encuentro la oscuridad de los conceptos fundamentales de las magnitudes geométricas y de los modos y métodos de representar la medición en estas magnitudes, y con finalmente los vacíos ocasionados en la teoría de las paralelas, cuyos intentos de remiendo por parte de los matemáticos han sido hasta el momento vanos.” Nikolái Ivánovich Lobachevski, The Theory of Parallels,1840.

 

“Las geometrías no euclídeas fueron estudiadas en su forma más general por Riemann, con su descubrimiento de las múltiples paralelas. En el siglo XX, a partir de los trabajos de Einstein, se le han encontrado también aplicaciones en física.”

Observa la representación gráfica de las siguientes funciones de Riemann:

 

 

 

La superficie de la función (z^2-1)1/4 de Riemann

Superficie de la función (z^4)-1/4 de Riemann.

Bueno, todo esto viene a recordar que muchas veces nos aparecen problemas que parecen indisolubles cuando, en realidad, lo único que ocurre es que nuestro intelecto no ha llegado a la amplitud de miras necesarias pàra poder “verlos” y resolverlos.  Así, gracias a Riemann, pudo Einstein salir del atasco en el que estaba metido con su teoría de la relatividad general que no sabía formular, le faltaban las matemáticas adecuadasd que encontro, precisamente, en las geometrías de los espacios curvos de Riemann, su Tensor Métrico, le “salvó la vida” a la RG.  Y, de la misma manera otros como:
–          Evariste Galois
–         Agustín Luis Cauchy 

–         George Cantor

–         Ensayo sobre las Paradojas de la Teoría de Conjuntos.

–         Richard Dedekind

–         Weierstrass

–          Riemann

 

–          Ramanujan

–         Euluer

–         Hilbert

–         Pascal

–       Leibniz


Y tantos otros antes y después… hicieron posible que llegáramos aquí y, otros que vendrán, harán posible que prosigamos el camino emprendido hace ya mucho tiempo y, no sólo contrinuirán a los posibles viajes en el tiempo (si finalmente fuesen posibles) sino que, además, nos darán las herramientas necesarias para poder llegar al corazón de la materia, de los secrtetos de la Natutaleza y, entonces amigos míos, y sólo entonces, podremos decir que somos auténticos señores del Hiperespacio que llegaremos a dominar para visitar las estrellas lejanas que, al fin y al cabo, ¡es nuestro futuro!

Lo de viajar hacia atrás o hacia adelante en el Tiempo… ¡es otra cosa!

emilio silvera

 

El Universo y sus enigmas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (12)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Asombra un poco oir (con más freecuencia de lo que sería deseable) a personas que se consideran inteligentes, decir que ellos saben lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este modelo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones pero, están apareciendo algunos datos que no dejan bien parado al Big Bang o, por lo menos, lo sitúa en una zona de interrogantes.

Como nadie estuvo allí para captarlo, basados en los datos que hemos podido recopilar, nos imaginamos lo que pudo ser (si es que realmente fue) lo ocurrido en aquellos primeros momentos del Big Bang. Al decir primeros, sitúo ese comenzar a después de la primera fracción de segundo, tiempo en el que, ni las matemáticas nos dejan entrar en él para buscar lo que realmente pasó.

Leer más

Las misteriosas enanas blancas

Autor por Emilio Silvera    ~    Archivo Clasificado en Los misterios del Universo    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejmplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, midelos de simulación, etc., estas estrellas se forman cuando, al funal de la vida de las estrellas medianas, al final de sus vidas, cuando agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas cuando las partes exteriores de la estrella son expulsadas al espacio interestelar para formar una Nebulosa Planetaria.

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 108 Kg/m3) que sólo evista su propio colapso  por la preseión de degeneración de los electrones (como sabeis los electrones son fermiones que estando sometidos al Principio de exclusión de pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se cjuntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, puede, incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

Este tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades  de 10-3 – 10-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener muha masa, en un agujero negro

Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

 

Una enana blanca comienza a expulsar material y formar una Nebulosa Planetaria

Las enanas blancas son estrellas calientes y pequeñas, generalmente como del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las condiciones necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su disminuye. A partir de esto es que se encuentra que hay un límite superior para la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente para detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.
Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias.

 

A supernova remnant about 7,000 light years from Earth.

A esto puede dar lugar la unión de dos enanas blancas

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en esta etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como para alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.

 

 

Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). Esta enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandraskhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó  Ramanujan), y, estando en la aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que ahora se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.

Subrahmanyan Chandrasekhar 1 300x204 Subramanyan Chandrasekhar

                     Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecanocuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo (para este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la decualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de e4sta alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

http://www.telefonica.net/web2/vicentepaloma/elcielodelmes/imagenes%20articulos/enana%20blanca%20sirio%20B.jpg

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la seéptima estrellas en orden de proxomidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Serio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decirm 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya desde hace algunos añis -nos decía Eddintong-” Sin embargo, la mayoría de los astróniomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la vrdad que ahora conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

Arriba la famosa Nebuliosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio hasta que, dentro de unos 100 millones de añosm vieja y fria, será más rojiza y se habrá convertido en eun cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso para estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de esta manera, quedaba convertida, finalmente, en una Estrella de Neutrones.

Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 1012 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de esta corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del tipo II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 1017 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo nombre. Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosos compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación.  Las binarias de rayos X masivas tambioén se piensan que contienen estrellas de neutrones.

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resulta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dcihas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enenas blancas como debida no al calor sino a un fenómeno mecanocuántico nuevo: los movimientos degenerados de los electrones, también llamado degeneración electrónica.

La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede deternerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Primncipio de esclusión de Pauli que impide que dos fermiones estén juntos, así que, esta fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constiruida estable como una enana blanca.

emilio silvera

¡Increíbles estructuras!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (10)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://4.bp.blogspot.com/-hvHgJMl1V2U/TvKXeXeOr7I/AAAAAAAAAkY/IgpQspXCGJs/s1600/Agujero-negro.jpg

 

 

Los dos agujeros negros más masivos que se encontraron hasta la fecha fueron hallados en el corazón de dos galaxias gigantes, situadas a varios cientos de millones de kilómetros de la Tierra. Los agujeros negros tienen una masa más de 10 mil millones de veces mayor a la del Sol, un récord, indica un artículo publicado en la revista científica Nature.

 

Casi siempre la unión de dos agujeros gigantes vienen we la mano de la colisión de las galaxias que los contienen en su centro galáctico. Y, además de que la galaxia se transmuta en una sóla mayor, el agujero también.

 

Localizan cientos de agujeros negros gigantes que no paran de crecer (Texto completo en: http://actualidad.rt.com/ciencias/view/55686-localizan-cientos-agujeros-negros-gigantes-paran-crecer) La noticia nos dice que la nueva concentración está tan alejada de la Tierra que está literalmente situada “al borde del Tiempo”,  ya que algunos se encuentran a una distancia de varios miles de millones de años luz de la Tierra.

Más allá de ellos se extiende un horizonte de fenómenos, detrás del cual se encuentran objetos tan distantes y antiguos, que su radiación nunca nos alcanzará. El objeto más alejado descubierto en el estudio es un agujero negro súper-masivo llamado ULASJ1234+0907. Se encuentra en la dirección de la constelación de Virgo, tan alejada que la luz que emite ha tardado 11.000 millones de años en alcanzar la Tierra, por lo que lo vemos igual a como era en el Universo temprano. La masa de este objeto monstruoso es de aproximadamente 10.000 millones de masas solares y además supera 10.000 veces la masa del agujero negro ubicado en el centro de nuestra Vía Láctea, lo que lo convierte en uno de los agujeros más masivos jamás vistos.
Unos astrónomos estadounidenses han descubierto la existencia de una estrella que gravita alrededor de un agujero negro supermasivo en el corazón de la Vía Láctea, el astro más cercano jamás encontrado junto a este cuerpo devorador de materia. El equipo de científicos de la Universidad de California, en Los Ángeles (UCLA), afirman que el descubrimiento ayudará a probar la teoría de la relatividad general de Einstein y sus predicciones acerca de cómo los agujeros negros curvan el espacio y distorsionan el tiempo.

La estrella, bautizada como SO-102, está orbitando cerca del agujero negro situado en el centro de la Vía Láctea cada 11 años y medio terrestres, mucho más rápido que los 60 años o más que normalmente les lleva al resto de las estrellas orbitar alrededor del mismo. Esta es la segunda estrella descubierta que presenta una órbita tan corta, -la otra, SO-2, gravita alrededor del agujero negro cada 16 años- gracias a nuevas técnicas mejoradas de imagen.

 

 

El agujero negro situado en el centro de la Vía Láctea, conocido como Sagitario A, ha expulsado la llamarada de rayos X más brillantes jamás observada hasta ahora, según ha informado la NASA. Según han explicado los expertos, Sagitario A lanza estas llamaradas una vez al día, aunque de menos intensidad, sin que aún conozca la razón de este fenómeno.
Lo cierto es amigos míos que, noticias de este tipo, se producen con mucha frecuencia cada vez a medida que los ingenios tecnológicos van ganando en prestaciones y precisión. Ya es difícil dudar de la existencia de estos “monstruos” devoradores de materia a los que, de momento no hemos llegado a conocer tan bien como nos gustaria y esconde algunos secretos que debemos desvelar, ya que, en esos secretos pueden estar encondidas algunas importantes respuestas a preguntas planteadas que nadie ha sabido contestar.
Descubren un cúmulo «camuflado» entre la Tierra y Orión
La Nebulosa de Orión es una de las más grandes maravillas del cielo nocturno
Es mucho lo que desconocemos incluso estándo situado en “nuestra vecindad”. La última noticia que me llega es que “Un equipo de investigadores, entre ellos Hervé Bouy, del Centro de Astrobiología (CSIC-INTA), ha descubierto lo que parece ser un cúmulo estelar “camuflado” entre la Tierra y la Nebulosa de Orión. La investigación aparece en la revista Astronomy&Astrophysics“.
Pero siguiendo con el tema de esta portada, los agujeros negros gigantes, lo cierto es que hablamos de ello pero, en realidad, no somos conscientes de la enormidad del objeto. Pensemos que nuestro Sol (el objeto más grande del Sistema solar), ya nos resulta inmenso y tiene una masa de 1,989 x 1030 kg y nos hablan de agujeros negros con masas ¡10.000 millones de veces superiores! ¿Qué estragos no podrán causar éstos monstruos del espacio en sus inmediaciones? ¡Pobres estrellas que pasen por allí!
Nuestra suerte ha sido que no tenemos ninguno por las inmediaciones del Sistema Solar y, el más cercano que conocemos está bastante alejado de nosotros como para que nos tengamos que preocupar. ¿Os imaginais lo que serán las fuerzas de marea producidas por semejante gigante? El Tiempo y el Espacio se distorsionaran en su presencia y haría imposible situarse cerca para poder observarlo.
File:Quasar 3C 273.jpg
              Imagen de 3C273 recogida por el Telescopio Espacial Hubble.
3C273 es un quásar radio-silencioso, y fue también la primera fuente extragaláctica de rayos X descubierta en 1.970.  Su luminosidad es variable en casi todas las longitudes de onda, desde las ondas de radio a los rayos gamma en escala de días a décadas. Se ha observado polarización  en radio, infrarrojo y óptico, lo cual sugiere que una gran cantidad de emisión es por radiación sincrotrón, creda por el jet de partículas cargadas moviéndose a velocidades relativistas. Las observaciones de VLBI en radio de 3C273 muestran movimientos propios  de la fuente de algunas regiones de emisión que aparentemente se mueven a velocidades superlumínicas.
3C 273 se halla en el corazón de una galaxia elíptica  gigante de tamaño de 30 segundos de arco  en su eje mayor y una magnitud aparente de aproximadamente 16, que se traducen a la distancia a la que se halla en una magnitud absoluta de alrededor de -23 -la luminosidad esperable en una galaxia más brillante de un cúmulo de galaxias,  comparable a galaxias de su tipo mucho más cercanas pero con desde luego mucha menos actividad cómo por ejemplo la M87 en el Cúmulo de Virgo- y un diámetro en su eje mayor de más de 300000 años-luz respectivamente. Este quásar tiene también un jet  observable en longitud de onda visible, que mide 150 000 años-luz de largo asociado a un agujero negro supermasivo, de más de 6 mil millones de de masas solares,  y a su disco de acreción.
De todas las ideas concebidas por la mente humana, desde los unicornios y las gárgolas hasta la construcción de aceleradores de partículas como el LHC, la más increíble, seguramente podría ser haber imaginado la existencia de agujeros negros y que, dicha imagen concebida por nuestras mentes, sea, una realidad en nuestro Universo. Algo tan masivo que genera tan ungente fuerza de gravedad que ni la luz puede huir de su radio de acción. Allí, desaparecen el Tiempo y el Espacio que son distorsionados hasta el infinito.
¿Qué sorpresas nos esperan aún? Algunos dicen que ahí, en esos agujeros devotadores de materia, se encuentra la entrada hacia otros universos y otro tiempo y que, mientras que en nuestro Universo la materia es devorada, al otro lado, la salida es un Agujero Blanco que la expulsa en ese “otro mundo”.
¡Será por imaginar!
emilio silvera

Preludio a la Relatividad

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1.893 el físico irlandés George Francis Fitzgerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley. Adujo que toda la materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso. Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Esquema de un interferómetro de Michelson.

 

Visualización de los anillos de interferencia.

Parecía como si la explicación de Fitzgerald insinuara que la naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de contracción de Fitzgerald, y su autor formuló una ecuación para el mismo, que referido a la contracción de un cuerpo móvil, fue predicha igualmente y de manera independiente por H. A. Lorente (1.853 – 1.928) de manera que, finalmente, se quedaron unidos como contracción de Lorentz-Fitzgerald.

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

El físico holandés Henrik Antón Lorentz, como hemos dicho, promovió esta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas). Se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa. Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa. Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación de Fitzgerald sobre el acortamiento. A 149.637 Km/s la masa de un electrón aumentaría en un 15%; a 262.000 Km/s, en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita. Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita?

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

Mientras que la contracción Fitzgerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas sí podía serlo, aunque indirectamente. De hecho, el muón tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial, que aunque mucho más amplia, recoge la contracción de Fitzgerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

Algunas veces pienso que los artistas en general, y los poetas en particular, tendrían que adaptar e incluir en sus esquemas artísticos y poéticos los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano. Estos adelantos científicos serían así coloreados con las pasiones humanas, y transformados, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana. Posiblemente, de haberlo hecho, el grado general de conocimiento sería mayor. De todas las maneras, no dejamos de avanzar en el conocimiento de la Naturaleza.

La Vuelta al Mundo en 80 Telescopios

Hacemos mil y un inventos para poder llegar a lugares que, hasta hace muy poco tiempo se pensaba que nos estaban vedados. Y, a pesar de ello, la cultura científica, en general es pobre.

Sólo uno de cada tres puede definir una molécula o nombrar a un solo científico vivo. De veinticinco licenciados escogidos al azar en la ceremonia de graduación de Harvard, sólo dos pudieron explicar por qué hace más calor en verano que en invierno. La respuesta, dicho sea de paso, no es “porque el Sol está más cerca”; no está más cerca. El eje de rotación de la Tierra está inclinado, así que cuando el hemisferio norte se inclina hacia el Sol, los rayos son más perpendiculares a la superficie, y la mitad del globo disfruta del verano. Al otro hemisferio llegan rayos oblicuos: es invierno. Es triste ver cómo aquellos graduados de Harvard podían ser tan ignorantes. ¡Aquí los tenemos con faltas de ortografía!

Por supuesto, hay momentos brillantes en los que la gente se sorprende. Hace años, en una línea de metro de Manhattan, un hombre mayor se las veía y deseaba con un problema de cálculo elemental de su libro de texto de la escuela nocturna; no hacía más que resoplar. Se volvió desesperado hacia el extraño que tenía a su lado, sentado junto a él, y le preguntó si sabía cálculo. El extraño afirmó con la cabeza y se puso a resolverle al hombre el problema. Claro que no todos los días un anciano estudia cálculo en el metro al lado del físico teórico ganador del Nobel de Física, T. D. Lee.

Leon Lederman cuenta una anécdota parecida a la del tren, pero con final diferente. Salía de Chicago en un tren de cercanías cuando una enfermera subió a él a la cabeza de un grupo de pacientes de un hospital psiquiátrico local. Se colocaron a su alrededor y la enfermera se puso a contarlos: “uno, dos tres…”. Se quedó mirando a Lederman y preguntó “¿quién es usted?”; “soy Leon Lederman” – respondió – “ganador del premio Nobel y director del Fermilab”. Lo señaló y siguió tristemente “sí claro,  cuatro, cinco, seis…”. Son cosas que ocurren a los humanos; ¡tan insignificantes y tan grandes! Somos capaces de lo mejor y de lo peor. Ahí tenemos la historia para ver los ejemplos de ello.

Pero ahora más en serio, es necesario preocuparse por la incultura científica reinante, entre otras muchas razones porque la ciencia, la técnica y el bienestar público están cada día más conectados. Y, además, es una verdadera pena perderse la concepción del mundo que, en parte, he plasmado en estas páginas. Aunque aparezca incompleta, se puede vislumbrar que posee grandiosidad y belleza, y va asomándose ya su simplicidad.

“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que dé unidad a lo que desde hacía tiempo parecía desunirlo.

Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.

Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.

Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.

 

Clic para ampliar Clic para ampliar

Clic para ampliar Clic para ampliar

Clic para ampliar Clic para ampliar

Algunos momentos de la vida del Maestro

Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, es la “unidad de la variedad”.

La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”

Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.

Para comprender mejor el panorama, hagamos una excursión hasta la astrofísica; hay que explicar por qué la física de partículas y la astrofísica se han fundido no hace muchos años, en un nivel nuevo  de intimidad, al que alguien llamó la conexión espacio interior/espacio exterior.

Mientras los expertos del espacio interior construían aceleradores, microscopios cada vez más potentes para ver qué pasaba en el dominio subnuclear, los colegas del espacio exterior sintetizaban los datos que tomaban unos telescopios cada vez más potentes, equipados con nuevas técnicas cuyo objeto era aumentar su sensibilidad y la capacidad de ver detalles finos. Otro gran avance fueron los observatorios establecidos en el espacio, con sus instrumentos para detectar infrarrojos, ultravioletas, rayos X y rayos gamma; en pocas palabras, toda la extensión del espectro electromagnético, muy buena parte del cual era bloqueado por nuestra atmósfera opaca y distorsionadora.

                                                                          ¿Hasta donde llegaremos?

La síntesis de la cosmología de los últimos cien años es el modelo cosmológico estándar. Sostiene que el universo empezó en forma de un estado caliente, denso, compacto, hace unos 15.000 millones de años. El universo era entonces infinitamente, o casi infinitamente, denso; infinita, o casi infinitamente, caliente. La descripción “infinito” es incómoda para los físicos; los modificadores son el resultado de la influencia difuminadota de la teoría cuántica. Por razones que quizá no conozcamos nunca, el universo estalló, y desde entonces ha estado expandiéndose y enfriándose.

Ahora bien, ¿cómo se han enterado de eso los cosmólogos? El modelo de la Gran Explosión (Big Bang) nació en los años treinta tras el descubrimiento de que las galaxias (conjuntos de 100.000 millones de estrellas, aproximadamente) se estaban separando entre sí, descubrimiento hecho por Edwin Hubble, que andaba midiendo sus velocidades en 1.929.

Hubble tenía que recoger de las galaxias lejanas una cantidad de luz que le permitiera resolver las líneas espectrales y compararlas con las líneas de los mismos elementos de la Tierra. Cayó en la cuenta de que todas las líneas se desplazaban sistemáticamente hacia el rojo. Se sabía que una fuente de luz que se aparta de un observador hace justo eso. El desplazamiento hacia el rojo era, de hecho, una medida de la velocidad relativa de la fuente y del observador.

Más tarde, Hubble halló que las galaxias se alejaban de él en todas las direcciones; esto era una manifestación de la expansión del espacio. Como el espacio expande las distancias entre todas las galaxias, la astrónoma Hedwina Knubble, que observase desde el planeta Penunbrio en Andrómeda, vería el mismo efecto o fenómeno: las galaxias se apartaría de ella.

Cuanto más distante sea el objeto, más deprisa se mueve. Esta es la esencia de la ley de Hubble. Su consecuencia es que, si se proyecta la película hacia atrás, las galaxias más lejanas, que se mueven más deprisa, se acercarán a los objetos más próximos, y todo el lío acabará juntándose y se acumulará en un volumen muy, muy pequeño, como, según se calcula actualmente, ocurría hace 15.000 millones de años.

La más famosa de las metáforas científicas te pide que imagines que eres una criatura bidimensional, un habitante del Plano. Conoces el este y el oeste, el norte y el sur, pero arriba y abajo no existen; sacaos el arriba y debajo de vuestras mentes. Vivís en la superficie de un globo que se expande. Por toda la superficie hay residencias de observadores, planetas y estrellas que se acumulan en galaxias por toda la esfera; todo bidimensional. Desde cualquier atalaya, todos los objetos se apartan a medida que la superficie se expande sin cesar. La distancia entre dos puntos cualesquiera de este universo crece. Eso es lo que pasa, precisamente, en nuestro mundo tridimensional. La otra virtud de esta metáfora es que, en nuestro universo, no hay ningún lugar especial. Todos los sitios o puntos de la superficie sin democráticamente iguales a todos los demás. No hay centro; no hay borde. No hay peligro de caerse del universo. Como nuestra metáfora del universo en expansión (la superficie del globo) es lo único que conocemos, no es que las estrellas se precipiten dentro del espacio. Lo que se expande es que espacio que lleva toda la barahúnda. No es fácil visualizar una expansión que ocurre en todo el universo. No hay un exterior, no hay un interior. Sólo hay este universo, que se expande. ¿En qué se expande? Pensad otra vez en vuestra vida como habitante del Plano, de la superficie del globo: en nuestra metáfora no existe nada más que la superficie.

Es mucho lo que podemos imaginar pero, lo cierto es, como nos decía Popper: “Cuánto más profundizo en el conocimiento de las cosas más consciente soy de lo poco que se. Mientras que mis conocimientos son finitos, mi ignorancia es ilimitada.”

Dos consecuencias adicionales de gran importancia que tiene la teoría del Big Bang acabaron por acallar la oposición, y ahora reina un considerable consenso. Una es la predicción de que la luz de la incandescencia original (presuponiendo que fue muy caliente) todavía está a nuestro alrededor, en forma de radiación remanente. Recordad que la luz está constituida por fotones, y que la energía de los fotones está en relación inversa con la longitud de onda. Una consecuencia de la expansión del universo es que todas las longitudes se expanden. Se predijo, pues, que las longitudes de onda, originalmente infinitesimales, como correspondía a unos fotones de gran energía, han crecido hasta pertenecer ahora a la región de las microondas, en la que las longitudes son unos pocos milímetros.

En 1.965 se descubrieron los rescoldos del Big Bang, es decir, la radiación de fondo de microondas. Esos fotones bañan el universo entero, y se mueven en todas las direcciones posibles. Los fotones que emprendieron viaje hace miles de millones de años cuando el universo era más pequeño y caliente, fueron descubiertos por una antena de los laboratorios Bell en Nueva Jersey.

Imagen del WMAP de la anisotropía de la temperatura del CMB.

 

Así que el descubrimiento hizo imprescindible medir la distribución de las longitudes de onda, y se hizo. Por medio de la ecuación de Planck, esta medición de la temperatura media de lo que quiera (el espacio, las estrellas, polvo, un satélite, los pitidos de un satélite que se hubiese colado ocasionalmente) que haya estado bañándose en esos fotones.

Las mediciones últimas efectuadas por la NASA con el satélite COBE dieron un resultado de 2’73 grados sobre el cero absoluto (2’73 ºK). Esta radiación remanente es una prueba muy potente a favor de la teoría del Big Bang caliente.

Los astrofísicos pueden hablar tan categóricamente porque han calculado qué distancias separaban a dos regiones del cielo en el momento en que se emitió la radiación de microondas observadas por el COBE. Ese momento ocurrió 300.000 años después del Big Bang, no tan pronto como sería deseable, pero sí lo más cerca del principio que podemos.

Resulta que temperaturas iguales en regiones separadas del espacio que nunca habían estado en contacto y cuyas separaciones eran tan grandes que ni siquiera a la velocidad de la luz daba tiempo para que las dos regiones se comunicasen, y sin embargo, sí tenían la misma temperatura. La teoría del Big Bang no podía explicarlo; ¿un fallo?, ¿un milagro? Se dio en llamar a eso la crisis de la causalidad, o de la isotropía.

De la causalidad porque parecía que había una conexión causal entre distintas regiones del cielo que nunca debieran haber estado en contacto; de la isotropía porque donde quiera que mires a gran escala verás prácticamente el mismo patrón de estrellas, galaxias, cúmulos y polvo estelar. Se podría sobrellevar esto en un modelo del Big Bang diciendo que la similitud de las miles de millones de piezas del universo que nunca estuvieron en contacto es puro accidente. Pero no nos gustan los “accidentes”: los milagros están estupendamente si jugamos a la lotería, pero no en la ciencia. Cuando se ve uno, los científicos sospechan que algo más importante se nos mueve entre bastidores. Me parece que mi inclinación científica me hace poco receptivo a los milagros. Si algo para habrá que buscar la causa.

El segundo éxito de gran importancia del modelo del Big Bang tiene que ver con la composición de nuestro universo. Puede parecer que el mundo está hecho de aire, tierra, agua y fuego, pero si echamos un vistazo arriba y medimos con nuestros telescopios espectroscópicos, apenas sí encontramos algo más que hidrógeno, y luego helio. Entre ambos suman el 98% del universo que podemos ver. El resto se compone de los otros noventa elementos. Sabemos gracias a nuestros telescopios espectroscópicos las cantidades relativas de los elementos ligero, y hete aquí que los teóricos del Big Bang dicen que esas abundancias son precisamente las que cabría esperar. Lo sabemos así.

El universo prenatal tenía en sí toda la materia del universo que hoy observamos, es decir, unos cien mil millones de galaxias, cada una con cien mil millones de soles. Todo lo que hoy podemos ver estaba comprimido en un volumen muchísimos menos que la cabeza de un alfiler. La temperatura era alta, unos 1032 grados Kelvin, mucho más caliente que nuestros 273 ºK actuales. Y en consecuencia la materia estaba descompuesta en sus componentes primordiales.

Una imagen aceptable de aquello es la de una “sopa caliente”, o plasma, de quarks y leptones (o lo que haya dentro, si es que hay algo) en la que chocan unos contra otros con energías del orden de 1018 GeV, o un billón de veces la energía del mayor colisionador que cualquier físico pueda imaginarse construir. La gravedad era rugiente, con su poderoso (pero aún mal conocido) influjo en esta escala microscópica.

Tras este comienzo fantástico, vinieron la expansión y el enfriamiento. A medida que el universo se enfriaba, las colisiones eran menos violentas. Los quarks, en contacto íntimo los unos con los otros como partes del denso grumo que era el universo infantil, empezaron a coagularse en protones, neutrones y los demás hadrones. Antes, esas uniones se habrían descompuesto en las inmediatas y violentas colisiones, pero el enfriamiento no cesaba; aumentaba con la expansión y las colisiones eran cada vez más suaves.

A los tres minutos de edad, las temperaturas habían caído lo bastante como para que pudiesen combinarse los protones y los neutrones, y se formaran núcleos estables. Este fue el periodo de nucleosíntesis, y como se sabe lo suficiente de física nuclear se pueden calcular las abundancias relativas de los elementos químicos que se formaron. Son los núcleos de elementos muy ligeros; los más pesados requieren de una “cocción” lenta en las estrellas.

Claro que, los átomos (núcleos más electrones) no se formaron hasta que la temperatura no cayó lo suficiente como para que los electrones se organizaran alrededor de los núcleos, lo que ocurrió 300.000 años después, más o menos. Así que, en cuanto se formaron los átomos neutros, los fotones pudieron moverse libremente, y ésta es la razón de que tengamos una información de fotones de microondas todavía.

La nucleosíntesis fue un éxito: las abundancias calculadas y las medidas coincidían. Como los cálculos son una mezcla íntima de física nuclear, reacciones de interacción débil y condiciones del universo primitivo, esa coincidencia es un apoyo muy fuerte para la teoría del Big Bang.

En realidad, el universo primitivo no era más que un laboratorio de acelerador con un presupuesto ilimitado. Nuestros astrofísicos tenían que saberlo todo acerca de los quarks y los leptones y las fuerzas para construir un modelo de evolución del universo. Los físicos de partículas reciben datos de su experimento grande y único. Por supuesto, para los tiempos anteriores a los 10-13 segundos, están mucho menos seguros de las leyes de la física. Así que, los astrofísicos azuzan a los teóricos de partículas para que se remanguen y contribuyan al torrente de artículos que los físicos teóricos lanzan al mundo con sus ideas: Higgs, unificación de cuerdas vibrantes, compuestos (qué hay dentro de los quarks) y un enjambre de teorías especulativas que se aventuran más allá del modelo estándar para construir un puente que nos lleve a la descripción perfecta del universo, de la Naturaleza. ¿Será posible algún día?

Esperemos a ver qué pasa con la historia que comenzaron Grabielle Veneziano, John Schwartz, André Neveu, Pierre Ramond, Jeff Harvey, Joel Sheik, Michael Green, David Gross y un dotado flautista de Hamelin que responde al nombre de Edward Witten.

La teoría de cuerdas es una teoría que nos habla de un lugar muy distante. Dice Leon Lederman que casi tan distante como Oz o la Atlántida; hablamos del dominio de Planck. No ha forma de que podamos imaginar datos experimentales en ese tiempo tan lejano; las energías necesarias (las de la masa de Planck) no están a nuestro alcance, lo que significa que no debemos perseverar.

¿Por qué no podemos encontrar una teoría matemáticamente coherente (sin infinitos) que describa de alguna manera Oz? ¡Dejar de soñar, como de reír, no es bueno!

Pero en verdad, al final de todo esto, el problema es cuánta masa gravitatoria hay en el universo. Que si la masa crítica, que si el universo abierto, plano o cerrado… la materia y energía del universo es más de la que se ve. Pasa lo contrario que con nuestra sabiduría (al menos eso decimos nosotros – me incluiré -), que parece mucha y en realidad es tan poca como la materia bariónica (el 4-5% del total). Creo que nuestra ignorancia (haciendo un símil) es equivalente a la materia oscura, nos queda un 95% de la capacidad del cerebro por descubrir. Por eso precisamente, debemos tener la esperanza de poder alcanzar las teorías soñadas y poder desvelar algún día estos misterios como los de la materia oscura, la masa del neutrino, o si los quarks están hechos de objetos más pequeños aún. ¡Todo llegará!

Sabemos representar los Modelos de Universo que imaginamos, y, aún no hemos llegado a saber qué es el Universo. Todo es, como dijo aquel, la belleza que se nos regala: “La unidad de la variedad”. Además, no debemos olvidar que, todo lo grande está hecho de cosas pequeñas.

¡Buena lectura!

emilio silvera