viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Objetos misteriosos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Kip Thorne, especialista en Agujeros Negros nos cuenta en uno de sus libros, cómo algunos científicos especializados como él, pudieron despejar muchas de las incógnitas escondidas en los misteriosos objetos.  La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.

En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273

Normalmente pensamos que la fricción es una pobre fuente de calor. Sin embargo, puesto que la energía gravitatoria es enorme, mucho mayor que la energía nuclear, la fricción puede realizar fácilmente la tarea de calentar el disco y hacer que brille con un brillo 100 veces mayor que la galaxia más luminosa.

¿Cómo puede un agujero negro actuar como un giróscopo? James Bardeen y Jacobus Petterson de la Universidad de Yale comprendieron la respuesta en 1975: si el agujero negro gira rápidamente, entonces se comporta precisamente como un giróscopo. La dirección del eje del giro permanece siempre firme fijo e inalterado, y el remolino creado por el giro en el espacio próximo al agujero permanece siempre firmemente orientado en la misma dirección.

Bardeen y Petterson demostraron mediante un cálculo matemático que este remolino en el espacio próximo al agujero debe agarrar la parte interna del disco de acreción y mantenerlo firmemente en el plano ecuatorial del agujero; y debe hacerlo así independientemente de cómo esté orientado el disco lejos del agujero.

A medida que se captura nuevo gas del espacio interestelar en la parte del disco distante del agujero, el gas puede cambiar la dirección del disco en dicha región, pero nunca puede cambiar la orientación del disco cerca del agujero. La acción giroscópica del agujero lo impide. Cerca del agujero el disco sigue y permanece siempre en el plano ecuatorial del mismo.

Sin la solución de Kerr a la ecuación de campo de Einstein, esta acción giroscópica hubiera sido desconocida y habría sido imposible explicar los cuásares. Con la solución de Kerr a mano, los astrofísicos de mitad de los años setenta estaban llegando a una explicación clara y elegante. Por primera vez, el concepto de un agujero negro como un cuerpo dinámico, más que un simple “agujero en el espacio”, estaba jugando un papel central en la explicación de las observaciones de los astrónomos.

¿Qué intensidad tendrá el remolino del espacio cerca de un agujero gigante? En otras palabras, ¿cuál es la velocidad de rotación de los agujeros gigantes? James Bardeen dedujo la respuesta: demostró matemáticamente que la acreción de gas por el agujero debería hacer que el agujero girase cada vez más rápido. Cuando el agujero hubiera engullido suficiente gas en espiral para duplicar su masa, el agujero debería estar girando casi a su velocidad máxima posible, la velocidad más allá de la cual las fuerzas centrífugas impiden cualquier aceleración adicional. De este modo, los agujeros negros gigantes deberían tener típicamente momentos angulares próximos a su valor máximo.

En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros centrales se harán gigantes

¿Cómo puede un agujero negro y su Disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica para el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:

El Agujero es atravesado por la línea de campo magnético. Cuando el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma hacia arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.

Algunos dicen que en los agujeros negros está la puerta hacia la quinta dimensión

Este proceso es muy interesante porque la energía que va a los chorros procede de la enorme energía rotacional del agujero (esto debería parecer obvio porque es la rotación del agujero la que provoca el remolino en el espacio, y es el remolino del espacio el que provoca la rotación de las líneas de campo y, a su vez, es la rotación de las líneas de campo la que desvía el plasma hacia fuera.)

¿Cómo es posible, en este proceso Blandford-Znajet, que el horizonte del agujero sea atravesado por líneas de campo magnético? tales líneas de campo serían una forma de “pelo” que puede convertirse en radiación electromagnética y radiada hacia fuera, y por consiguiente, según el teorema de Price, deben ser radiadas hacia fuera. En realidad, el teorema de Price solo es correcto si el agujero está aislado, lejos de cualquier otro objeto.

Pero el agujero que estamos discutiendo no está aislado, está rodeado de un disco de acreción. Así que las líneas de campo que surgen del agujero, del hemisferio norte y las que salen del hemisferio sur se doblarán para empalmarse y ser una continuación una de otra, y la única forma de que estas líneas puedan entonces escapar es abriendo su camino a través del gas caliente del disco de acreción. Pero el gas caliente no permitirá que las líneas de campo lo atraviesen; las confina firmemente en la región del espacio en la cara interna del disco, y puesto que la mayor parte de dicha región está ocupada por el agujero, la mayoría de las líneas de campo confinadas atravesarán el agujero.

¿De donde proceden esas líneas de campo magnético? Del propio disco.

Cualquier gas en el Universo está magnetizado, al menos un poco, y el gas del disco no es una excepción. Conforme el agujero acrece, poco a poco, gas del disco, el gas lleva con él líneas de campo magnético. Cada pequeña cantidad de gas que se aproxima al agujero arrastra sus líneas de campo magnético y, al cruzar el horizonte, deja las líneas de campo detrás, sobresaliendo del horizonte y enroscándose. Estas líneas de campo enroscadas, firmemente confinadas por el disco circundante, extraerían entonces la energía rotacional del agujero mediante el proceso de Blandford-Znajet.

Los métodos de producir chorros (orificios en una nube de gas, viento de un embudo, líneas de campo arremolinadas ancladas en el disco, y el proceso Blandford-Znajet) actúan probablemente, en grados diversos, en los cuásares, en las radiogalaxias y en los núcleos característicos de algunos otros tipos de galaxias (núcleos que se denominan núcleos galácticos activos).

Si los cuásares y las radiogalaxias están activados por el mismo tipo de máquina de agujero negro, ¿qué hace que parezcan tan diferentes? ¿Por qué la luz de un cuásar aparece como si procediera de un objeto similar a una estrella, intensamente luminoso y de un tamaño de 1 mes-luz o menos, mientras que la luz de radiogalaxias procede de un agregado de estrellas similar a la Vía Láctea, de un tamaño de 100.000 años-luz?

Parece casi seguro que los cuásares no son diferentes de las radiogalaxias; sus máquinas centrales también están rodeadas de una galaxia se estrellas de un tamaño de 100.000 a.l. Sin embargo, en un cuásar el agujero negro central está alimentado a un ritmo especialmente elevado por el gas de acreción y, consiguientemente, el calentamiento friccional del disco es también elevado. Este calentamiento del disco hace que brille tan fuertemente que su brillo óptico es cientos o miles de veces que el de todas las estrellas de la galaxia circundante juntas.

Los astrónomos, cegados por el brillo del disco, no pueden ver las estrellas de la galaxia, y por ello el objeto parece “cuasi estelar” (es decir, similar a una estrella; como un minúsculo punto luminoso intenso) en lugar de parecer una galaxia.

La región más interna del disco es tan caliente que emite rayos X; un poco más lejos el disco está más frío y emite radiación ultravioleta; aún más lejos está más frío todavía y emite radiación óptica (luz); en su región mas externa está incluso más frío y emite radiación infrarroja. La región emisora de luz tiene típicamente un tamaño de aproximadamente un año-luz, aunque en algunos casos, tales como 3C273, puede ser de un mes luz o más pequeña.

Estas explicaciones para los cuásares y las radiogalaxias basadas en agujeros negros son tan satisfactorias que es tentador asegurar que deben ser correctas.

Está claro que hemos podido acceder a muchos conocimientos que no hace mucho tiempo eran impensables pero, las teorías de Einstein y Planck, deben ser sobrepasadas y debemos ir mucho más lejos, allí donde residen esas respuestas que hasta el momento nadie ha sabido dar y que responderán a preguntas que fueron posibles formular, gracias a Einstein y Planck, ya que, sin los conocimientos que ellos nos hicieron llegar, no podríamos intuir que hay muchas cosas que están más allá de sus postulados.

emilio silvera

Os hablaré de REMS, una estación meteorológica especial

Autor por Emilio Silvera    ~    Archivo Clasificado en exploración del espacio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Javier Gómez-Elvira, investigador del CAB (INTA-CSIC): “REMS registrará seis parámetros atmosféricos distintos”

jgb

23/11/2011

(infoespacial.com) Madrid.- Javier Gómez-Elvira, ingeniero en robótica del Centro de Astrobiología (CAB) del INTA-CSIC, e investigador principal del REMS (Rover Environmental Monitoring Station), explica que el instrumento desarrollado en España para Curiosity registrará seis parámetros atmosféricos: dirección y velocidad del viento, presión, humedad relativa, temperatura del aire, temperatura del terreno y radiación ultravioleta. (por cierto, se ha detectado que la atmósfera de Marte está saturada de vapor de agua?

Todos los sensores están localizados en torno a tres elementos: dos brazos unidos al Mástil de Teledetección (RSM), el sensor ultravioleta (UVS) situado en la cubierta superior del rover, y la Unidad de Control de Instrumentos (ICU) integrada dentro del vehículo.

“Los brazos son de aproximadamente de 1.5 metros por encima del nivel del suelo. La longitud de los mismos es similar al diámetro del RSM, y por lo tanto, la perturbación del flujo de viento por el RSM puede alcanzar la punta del brazo donde está ubicado el sensor de viento”, señala el investigador.

El rover Curiosity de la misión Mars Science Laboratory (MSL) de la NASA despega este sábado desde Cabo Cañaveral, en EE UU, rumbo a Marte. El vehículo incorpora dos instrumentos con tecnología española: la estación de monitorización medioambiental REMS y una antena de alta ganancia para enviar datos a la Tierra. El objetivo de la misión es determinar la habitabilidad del planeta rojo.
“El aspecto más importante del Mars Science Laboratory es que, a diferencia de otras misiones a Marte en la que los geólogos solo nos pudieron decir la composición de las rocas y si había habido agua, ahora se van a desarrollar estudios de química orgánica para buscar moléculas o procesos que se asocian con la vida”, explica a SINC Ashley Stroupe, ingeniera robótica en el JPL de la NASA y participante en este proyecto.
“También se observarán muchos otros aspectos del entorno marciano para determinar si pudo haber sido habitable alguna vez –añade la científica–, aportando nuevos enfoques sobre la historia de este planeta y la posibilidad de que la vida apareciera allí, o incluso que todavía exista oculta en alguna parte”.

El Rover Environmental Monitoring Station (REMS) es un instrumento desarrollado en el Centro de Astrobiología (INTA-CSIC) para explorar el medio ambiente en la superficie de Marte a borde del Mars SciencieLaboratory (MSL) de la Agencia Espacial de los EE UU (NASA). El MSL bautizado para el gran público como Curiosity es un vehículo que estudiará la habitabilidad del planeta y valorará si Marte fue o es todavía entorno adecuado para poder sostener la vida microbiana.

En su operación nominal a lo largo de un período mínimo de dos años terrestres (un año marciano, aproximadamente), REMS registrará durante un intervalo de cinco minutos cada hora, la temperatura del aire, la presión, la humedad relativa, la temperatura del suelo, la velocidad y dirección del viento y la radiación ultravioleta (UV).

El registro sistemático de dichas variables medioambientales permitirá caracterizar, entre otros fenómenos, la dinámica de capa límite de la atmósfera marciana, ciclos del agua y del polvo, y los niveles de radiación UV, contribuyendo de este modo a los objetivos fundamentales de la misión MSL.

La construcción, calibrado y prueba del instrumento REMS ha sido dirigida por el Centro de Astrobiología /CAB, CSIC-INTA), en colaboración con la Empresa EADS/Crisa, la Universidad Politécnica de Cataluña, el Instituto Meteorológico Finlandés (FMI), la Universidad de Alcalá de Henares y diversas instituciones norteamericanas.

Curiosity con REMS a bordo , fue lanzado con éxito por un cohete Atlas V el pasado 26 de noviembre de 2011 desde Kennedy Space Center, en Cabo Cañaveral (cerca de Orlando, Florida, USA). En la actualidad viaja sin mayor novedad hacia Marte, donde se espera que llegue en Agosto de este mismo año. Todas las pruebas hechas después del lanzamiento han confirmado que todos los sistemas (incluyendo REMS), funcionan según lo esperado.

A lo largo de la Historia de la exploración espacial, las Agencias de la Unión Soviética, Estados Unidos, Europa y Japón, han enviado a Marte varias decenas de plataformas espaciales. El motor de esta búsqueda es el afán de alcanzar nuevas fronteras del conocimiento, explorar entornos desconocidos y superar desafíos tecnológicos. Aproximadamente dos terceras partes de estas misiones, han fallado de una u otra manera antes del comienzo de la misión.

La mayor parte de las misiones científicas de exploración de Marte se han desarrollado en satélites que orbitan alrededor del planeta y utilizan técnicas de detección remota (teledetección) para caracterizar la superficie y el subsuelo del planeta, la geología y la mineralogía, Actualmente continúan en operación, investigando la superficie y la atmósfera de Marte, los orbitadores:

                                             Mars Reconnaissance Orbiter (desde 2006)

 

 

                                    Mars Express (de la ESA, desde 2003), y

 

 

                                          Mars Odyssei (desde 2001),

Y como vehículo de superficie, de los Mars Exploratión Rovers (MER)…el

Recientemente ha llegado a su fin con éxito dos misiones muy fructíferas, un orbitador, el Mars GlobalSurveyor (1997-2006)

 

 

y el otro vehículo de los MER, el Spirit rover (2004-2010).

Las técnicas de detección remota han sido explotadas hasta la fecha con gran éxito. Se han utilizado: espectrómetros (tanto en rango visible, como en el infrarrojo o en el ultravioleta), cámaras con capacidad para tomar imágenes de alta resolución, rádares para el estudio del subsuelo, detectores de campo magnético, detectores de neutrones, etc. No obstante la detección remota tiene ciertas limitaciones a la hora de caracterizar los fenómenos de superficie. Por un lado cada punto del planeta es observado a distintas horas del día y en distintas estaciones por lo que no es posible adquirir una secuencia sistemática de procesos locales que varíen en escalas de tiempos pequeñas.

En fin, que todas las misiones encaminadas a explorar el exterior, siempre resultarán muy complejas y, Marte, es como una pieza de toque, un laboratorio en el que ensayar para mayores proyectos.

Esperemos que, ahora que está bien asentada en aquel planeta, Curiosity nos pueda enviar buenas nuevas y buenas noticias. Imágenes ya nos facilita algunas pero… ¡queremos más! Además… ¡De la vida ni rastro!

emilio silvera