Ene
6
¿Qué es un Agujero Negro?
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (10)
Representar un Agujero negro no resulta nada fácil y, se hace de manera que aparezca en la imagen lo que se cree que podríamos ver en el caso de estar allí cerca, contemplando a uno de ellos, y, como existen varias formas teóricamente posibles de agujero negro, las representaciones que podemos contemplar pueden ser distintas las unas de las otras.
Según sean estrellas medianas como nuestro Sol, grandes o muy grandes, lo que antes era una estrella, cuando finaliza el derrumbe o implosión, cuando la estrella es aplastada sobre sí misma bajo su propio peso, cuando finalice su ciclo y consuma todo el combustible nuclear que la hace brillar, tendremos una estrella enana blanca, una estrella de neutrones o un agujero negro.
Alrededor del agujero negro puede formarse un disco de acreción cuando cae materia sobre él desde una estrella cercana que, para su mal, se atreve a traspasar el horizonte de sucesos. Es tan enorme la fuerza de gravedad que genera el agujero negro que, en tal circunstancias, literalmente hablando se come a esa estrella compañera próxima. En ese proceso, el agujero negro produce energía predominantemente en longitudes de onda de rayos X a medida que la materia está siendo engullida hacia la singularidad. De hecho, estos rayos X pueden ser detectados por satélites en órbita. Se ha localizado una enorme fuente de rayos X en el centro mismo de nuestra galaxia. En realidad han sido varias las fuentes localizadas allí, a unos 30.000 años luz de nosotros. Son serios candidatos a agujeros negros, siendo el más famoso Cygnus X-1.
Existen varias formas teóricamente posibles de agujeros negros.
- Un agujero negro sin rotación ni carga eléctrica (Schwarzschild).
- Un agujero negro sin rotación con carga eléctrica (Reissner-Nordström).
Ene
6
El Universo es dinámico y nada en él permanece
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (2)
Nosotros, los humanos, nacemos y morimos. Esa es la regla, y, como desde el primer momento de nuestras vidas se ha puesto en marcha “un reloj” que estará con nosotros hasta el día último, parece que vamos siempre en contra del Tiempo, que nunca tendremos la oportunidad de realizar todos nuestros deseos y aspiraciones y, siempre tendremos que dejar que otros continúen el trabajo que, por otra parte, tampoco nosotros iniciamos, sino que, retomamos de aquellos otros que antes que nosotros estuvieron aquí y nos marcaron el camino a seguir. Es una larga cadena de hechos, de acontecimientos y de evolución que no sabemos cuando ni por qué finalizará un día lejano del futuro que presentimos pero que, con certerza, no conocemos.
Desde siempre, los grandes filósofos se sintieron frustados al comprender que, nuestra estancia aquí, sería limitada. El ser que se ve arriba en la imagen dicen que buscaba el motor de la vida pero, nosotros, sabiendo ya el origen de ese motor, buscamos otras respuestas que nadie nos sabe contestar y, hemos llegado a comprender que, en este Universo que nos acoge, todo tiene un principio y un final, nada permanece, lo infinito y la eternidad son sólo palabras que quieren significar “el para siempre” en que todos pensamos para la Humanidad. Sin embargo, la misma dinámica y el ritmo del Universo nos lleva de manera irremisible, hacia el final.
Ene
5
¿La Vida? Una vez que surgió en nuestro Universo… ¡Estará...
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (0)
El Hubble, el Telescopio Espacial que orbita la Tierra, se ha fijado en los nuevos Sistemas planetarios que se forman en la Gran Nube de Orión. Dentro de unos pocos miles de millones de años, cuando las estrellas centrales estén en la secuencia principal brillando al fusionar Hidrógeno en Helio, las planetas se irán enfriando a medida que sus atmósferas cambian y, en algunos de ellos se forman océanos al haber tenido “la suerte” de caer en la zona habitable de su estrella. Algunos miles de millones de años más tarde, la vida que posiblemente habrá surgido en esos planetas afortunados, comenzará a evolucionar hasta que, con suerte, alcance la consciencia.
Es cierto que, con mucha frecuencia, aparecen aquí trabajos que versan sobre la vida, ese misterio que nos lleva a querer buscar sus orígenes y a saber, cómo y para qué surgió aquí en el Planeta Tierra. Nos interesamos por cada uno de pasos evolutivos y nos llama la atención ese larguísimo ciclo que llevó la vida desde aquella célula replicante hasta los seres humanos. Pero, ¿hay algo más interesante que la Vida para poder estudiarlo? Seguramente con la Física, la Química y la Astrofísica, sean las cuestiones más interesantes para el ser humano. ¡Ah! sin olvidarnos de las matemáticas.
En algún momento del pasado de la Tierra, estimado en aproximadamente 2.500 – 3.500 millones de años, tuvo lugar lo que denominamos revolución oxigénica, durante la cual las cianobacterias produjeron tanto oxígeno que la atmósfera y los océanos quedaron literalmente saturados de este nuevo compuesto químico. Tal producción de oxígeno afectó drásticamente a la biósfera del planeta. Antes de la revolución oxigénica, pocos organismos estaban adaptados para vivir en presencia de oxígeno abundante; las moléculas de oxígeno actuaban como un veneno, reaccionando con las moléculas orgánicas complejas y degradándolas. Debido a esto, la mayor parte de la vida existente en ese momento debió quedar exterminada; las cianobacterias serían responsables de una gran extinción masiva.
Por otro lado, los elevados niveles de oxígeno que se acumularon en la atmósfera dieron como resultado una capa de ozono, de vital importancia para la vida como la conocemos. El ozono filtra los perniciosos rayos ultravioletas, que tienen un efecto especialmente perjudicial para los ácidos nucleicos, impidiendo que lleguen a la superficie de la Tierra. Si lo miramos desde esa perspectiva, es muy probable que el desarrollo de la vida fuera de los océanos y más aún, de toda la vida como la conocemos, incluso la nuestra, haya sido posible solo gracias a la capa de ozono, y por ende, a las cianobacterias que aportaron el abundante oxígeno para generarla.
El consenso es que la vida apareció en el planeta hace entre 3.900 y 3.800 millones de años. Los primeros organismos fueron procariotas, células muy simples que carecen de núcleo. Los procariotas que mejor conocemos son las bacterias, semejantes a la imagen que se muestra.
La segunda imagen es el árbol filogenético que muestra cómo están relacionados los genomas de los procariotas con los demás seres vivos del planeta que, de una u otra manera, son todos ellos parientes más o menos lejanos y que, en definitiva, están todos hechos de la misma cosa. En su fuente primera, Quarks y Leptones que forman los átomos de carbono que son la base de nuestro sistema junto a otros elementos que nos conforman y, el agua, es la presencia principal.
Se cree que el último eslabón del desarrollo humano, apareció en el planeta hace sólo 160.000 años. Hablamos del Homo Sapiens.Los homo antecessor eran individuos fuertes, altos y con rostros de rasgos modernos, con una mandíbula bastante parecida a la del homo erectus. Sin embargo, la orientación facial es muy parecida a la del Homo sapiens. Se acepta la teoría de que el Homo antecessor proviene de África, aunque se ha discutido debido a su parecido con el Homo erectus (Hombre de Pekín), lo que para algunos sugiere un origen asiático.
Desgraciadamente, no se han encontrado aún fósiles en África de la misma antigüedad que podrían hacer seguir la pista de esta especie, y los de Asia contemporáneos a ella se refieren únicamente al Homo Erectus. Se podría decir que es el eslabón que une al Homo ergaster y enlaza con formas más cercanas a nosotros. A pesar de todos los estudios realizados, esta nueva especie está aún muy cuestionada por paleontólogos y especialistas, los cuales opinan que se trata en realidad de Homo Heidelbergensis. Estas luchas dialécticas son muy comunes entre los especialistas y hasta que no hay una evidencia abrumadora (y a veces ni eso) no se ponen de acuerdo en las afirmaciones que realizan.
Mientras en Asia Homo Ergaster evolucionaba a Homo erectus, en África siguió un camino diferente pero evolutivamente paralelo, dando lugar a una nueva especie, de rasgos craneales aún más modernos, aunque todavía con parecido a la especie anterior; será una especie crucial, el Homo antecessor, ya que será la que origine definitivamente al Homo sapiens.
Un hecho común por lo que vemos en la historia del universo es la unión. Las partículas elementales se unen formando átomos, que se unen para formar moléculas que se unen creando la materia macroscópica que conocemos. El mundo está formado por átomos y moléculas que conforman la materia de los mundos y de los seres vivos.
No siempre le damos la impportancia que tiene el líquido elemento, esencial para la vida de todas las especies. Este hecho es factible también en la materia orgánica, creando una rama del arbol de la boda universal de la que colgamos nosotros. La unión de diversos componentes químicos, la teoría de la sopa prebiótica y un buen salto de años, con alguna chispa de originalidad, se formaron las células primitivas.
Esto ya surgía de la unión de múltiples compuestos. Algo tan complejo y a la vez tan modular. Pero esto no acaba aquí ni mucho menos..
La evolución y unión de más componentes llega a dar otras células más complejas, las eucariotas, que con su unión y evolución dan lugar a seres vivos superiores, como los conocemos ahora.
En este nivel, podemos ver como la unión en la mayoría de las especies da lugar a frutos muy diversos. Las manadas sirven de protección entre sí a la par que da ventajas añadidas. Las tribus más de lo mismo. En esencia, todas estas formas de unión tienen algo común, el trasvase de información y la prueba y error. Así se llega a la actualidad. Un mundo dominado por la unión de una especie dominante que ha sabido trabajar para llegar mucho más lejos de donde estaba hace años.
Todos hemos leído alguna vez sobre el famoso experimentio de Miller, el químico y biólogo que, en 1953 realizó un experimento que asombró a todos los expertos del mundo. Montó un sistema de tubos de vidrio imitó la primera atmósfera, el océano y las tormentas eléctricas. Al cabo de pocos días se habían formado complejos compuestos orgánicos, tales como aminoácidos y azúcares. Parecía que se había resuelto el origen de la vida. Se había inventado el término “sopa prebiótica”. Claro que, aquello sirvió para tener una idea más aproximada a lo que pudo pasar, el total de la historia es muicho más complejo y, desde luego, enn ese largo túnel de la vida, son muchos los rincones oscuros que aún, no hemos sido capaces de alumbrar. El misterio continúa.
No digamos de la variedad de elementos encontrados en las Nubes moleculares gigantes, en las que se han detectado elementos necesarios para la vida que, según mi modesto parecer, en nuestro Universo… ¡Es imparable! Millones de mundos estarán latiendo llenos de vida que, alumnbrada y calentada por otras estrellas, repetirán los ciclos que se dieron en la Tierra.


Ene
5
¡La Tierra! Nuestra casa
por Emilio Silvera ~
Clasificado en Naturaleza misteriosa ~
Comments (0)
La atmósfera
La atmósfera terrestre (troposfera y estratosfera) es tan delgada que, dibujando el planeta con un diámetro de 10 cm, tendría un espesor de unos 0’4 milímetros, equivalente al grosor de una línea de lápiz. Sin embargo, esta delgada capa gaseosa posee una importancia crítica para mantener el balance energético de la Tierra.
El planeta es adecuado para el desarrollo de la vida debido a que su atmósfera el llamativamente diferente de la de sus vecinos más próximos. La atmósfera de Venus está compuesta en un 96 por ciento de CO2, con un 3’5 por ciento de nitrógeno y trazas de gases nobles. La atmósfera de Marte contiene un 95’3 por ciento de CO2, un 2’7 por ciento de nitrógeno, 1’6 por ciento de argón y también trazas de agua y O3. Una atmósfera parecida a la terrestre determinaría que en la superficie marciana la temperatura sería superior a los 200º C y la presión de unos pocos MPa. En tales condiciones no podría existir vida compleja basada en el carbono con tejidos húmedos.
Hay pocas dudas de que la primera atmósfera de la Tierra contuviera abundante CO2, pero no está claro si su posterior desaparición se debió exclusivamente a procesos geoquímicos inorgánicos (sobre todo a la pérdida de ácido carbónico), o si los primeros organismos fueron importantes en la posterior conversión de CO2 en sedimentos de CaCO3. Parece claro, por el contrario, que la fotosíntesis llevada a cabo inicialmente por bacterias fue la responsable de la transformación de la atmósfera sin oxígeno en el Arcaico.
Tenemos una posición privilegiada dentro del Sistema solar
El aumento de oxígeno comenzó a acelerarse hace unos 2.100 millones de años y el actual nivel del 20 por ciento se alcanzó hace unos 300 millones de años. El aumento del oxígeno troposférico permitió la formación de ozono estratosférico, que protegió la biosfera de la energética radiación UV de longitudes de onda inferiores a 295 nm. Sin esta protección no hubiera sido posible la evolución de plantas y animales más complejos, ya que si la radiación UV de frecuencias menores ya mata los gérmenes y quema la piel, la de frecuencias altas es letal para la mayoría de los organismos.
Las actividades humanas pueden modificar poco las proporciones de los constituyentes atmosféricos. La cantidad de nitrógeno que se utiliza para sintetizar amoniaco representa una fracción despreciable de las enormes reservas troposféricas y la desnitrificación finalmente recicle todo el gas. Incluso el consumo de todas las reservas conocidas de combustibles fósiles (un hecho imposible debido a los costos prohibitivos de la extracción de algunas de estas fuentes de energía, sumergidas en las fosas abisales a miles de kilómetros de profundidad) reduciría la concentración de O2 en menos de un 2 por ciento.
Esta planta generadora de Nuevo México libera dióxido de azufre y otros contaminantes del aire.
Las emisiones locales y regionales de aire contaminado contienen muchos gases, pero los riesgos de un cambio climático global sólo pueden venir de mayores emisiones de compuestos en trazas. Algunos de esos gases (sobre todo CO2, N2O y CH4), así como el vapor de agua, absorben fuertemente la radiación en el espectro IR. Consecuentemente, la radiación IR emitida por la superficie de la Tierra tiene longitudes de onda comprendidas en distintas ventanas intercaladas entre bandas de absorción.
Las bandas de absorción más importantes del vapor de agua están comprendidas entre 2’5 y 3 μm y entre 5 y 7 μm, mientras que el CO2 tiene dos picos estrechos en 2’5 y 4 μm, y una banda más ancha cerca de los 15 μm. Como la radiación terrestre está completamente incluida en el espectro IR, esta absorción tiene un gran efecto en el balance de la radiación de la Tierra.
Para mantener la biosfera habitable hacen falta solamente concentraciones muy pequeñas de gases de “efecto invernadero”. El CO2 representa actualmente sólo unos 360 ppm* (menos del 0’04%) de la atmósfera terrestre, y los demás gases en traza miden en ppb o ppt. Esta composición hace que la temperatura media en la superficie del planeta sea de unos 16º C, la cual, combinada con una presión superficial de 101 KPa, asegura que el agua permanezca líquida y que sea posible la fotosíntesis y el metabolismo heterótrofo. Hay que procurar (hablando coloquialmente) que Gaia no se enfade, ya que el aumento de las concentraciones de gases en traza elevaría gradualmente la temperatura media de la troposfera.
La conversión de bosques y praderas en campos de cultivo y la utilización de combustibles sólidos han hecho aumentar las emisiones de CO2, mientras que el creciente uso de fertilizantes nitrogenados, la cada vez más numerosa cabaña vacuna y el aumento del cultivo de arroz emiten cantidades adicionales de N2O y CH4. Los fluorforocarbonados, además de sus destructivos efectos sobre el ozono troposférico, son gases con efecto invernadero muy potentes. Debido a la acción combinada de los gases invernaderos antropogénicos, el flujo medio de calor absorbido ha aumentado en 2’5 W/m2 en grandes áreas del hemisferio norte, pero no estamos seguros de hasta dónde llegará esta tendencia ni de su velocidad. Lo mejor sería no confiarse; mi padre, hombre no cultivado, decía a menudo que “más vale un por si acaso que un yo creí”.
La atmósfera también interviene en el balance energético del planeta redistribuyendo el calor sensible* y el calor latente del agua con los vientos y las lluvias, y de una manera completamente diferente pero más espectacular, con los rayos. La mayoría de esas descargas de elevadísima concentración de energía se originan en los cumulonimbos, y tienen una enorme potencia (duplicar el tamaño de la nube implica aumentar la potencia del rayo treinta veces). Un rayo normal descarga entre 20 y 50 MJ, la mayor parte de esa energía en 10 μs, produciendo la impresionante potencia de 1-10 GW. La luz visible emitida representa solamente el 0’2-2% de la energía disipada, invirtiéndose el resto en calentar la atmósfera a su alrededor y en la energía acústica del trueno. La observación de satélites indica que por término medio se producen unos cien mil relámpagos por segundo.
Sabemos que la atmósfera es la envoltura gaseosa que rodea a un cuerpo astronómico. Varios planetas (incluyendo la Tierra) poseen atmósferas considerables debido a su intensa gravedad. Los movimientos de los gases en las atmósferas planetarias en respuesta al calentamiento, junto con las fuerzas rotacionales, generan sistemas meteorológicos. Los satélites planetarios Titán y Tritón también poseen atmósferas.
Creo que la atmósfera es quizá el término más vago para identificar una parte de un cuerpo celeste. Está referido a su envoltura superficial, generalmente de un planeta o estrella. Parece fácil decirlo, pero los gases no son como un líquido o un trozo de roca, en los que puede determinarse exactamente dónde está la superficie que los separa del entorno circundante de una manera precisa. Es imposible indicar el nivel exacto donde acaba la atmósfera y comienza el plasma interplanetario. De hecho, los gases apenas están sometidos a la fuerza de la gravedad; se “esfuman” hacia el espacio y abandonan continuamente el cuerpo celeste. En el caso de la Tierra, por estar cerca del Sol, determinar dónde termina la atmósfera terrestre y dónde empieza la solar es un problema al que sólo puede responderse teóricamente, que dicho sea de paso, permite licencias literarias que prohíben las matemáticas.
Componentes de la atmósfera en los estratos bajos (índices casi constantes) |
|
Nitrógeno molecular | 780’84 |
Oxígeno molecular | 209’46 |
Anhídrido carbónico | 430 |
Argón | 9’34 |
Neón | 0’0018 |
Helio | 0’0005 |
Criptón | 0’000114 |
Xenón | 0’000009 |
Hidrógeno molecular | 0’00005 |
Metano | 0’00017 |
Vapor de agua | 0 – 4 |
Componentes de la atmósfera en los estratos bajos (cantidades variables; aire seco) |
||
Compuesto |
Origen |
Cantidad |
Ozono |
Radiación ultravioleta |
0 – 0’50 ppm |
Anhídrido sulfuroso |
Industrias y volcanes |
0 – 1 ppm |
Dióxido de nitrógeno |
Industria |
0 – 0’02 ppm |
Nitrógeno molecular |
Industria |
104 g/m3 |
Cloruro sódico |
Mar |
104 g/m3 |
Amoniaco |
Industria |
Trazas |
Óxido de carbono |
Industria |
Trazas |
Resumiendo |
|
Nitrógeno |
78% |
Oxígeno |
20% |
Argón |
0’94% |
CO2 |
0’046% |
Otros |
≈ 1% |
Podríamos hablar aquí de:
- Homosfera
- Heterosfera
- Troposfera
- Estratosfera
- Mesosfera
- Termosfera
- Ionosfera
- Magnetosfera
- Exosfera
Y otras divisiones y subdivisiones atmosféricas; sin embargo, antes de cerrar este capítulo, me pararé en lo que denominamos la biosfera.
La biosfera y la hidrosfera están estrechamente relacionadas: el agua es el elemento esencial de todas las formas de vida, y la distribución del agua en el planeta (es decir, los límites de la hidrosfera) condiciona directamente la distribución de los organismos (los límites de la biosfera). El término biosfera, de reciente creación, indica el conjunto de zonas de la Tierra donde hay vida, y se circunscribe a una estrecha región de unos 20 Km de altura comprendida entre las cimas montañosas más elevadas y los fondos oceánicos más profundos. Sólo pueden hallarse formas de vida en la biosfera, donde las condiciones de temperatura, presión y humedad son adecuadas para las más diversas formas orgánicas de la Tierra.
Obviamente, las fronteras de dicha “esfera” son elásticas y su extensión coincide con la de la hidrosfera; se superpone a las capas más bajas de la atmósfera y a las superficiales de la litosfera, donde se sumerge, como máximo, unos 2 Km. Sin embargo, si por biosfera se entiende la zona en la que hay vida así como la parte inorgánica indispensable para la vida, deberíamos incluir en este concepto toda la atmósfera, sin cuyo “escudo” contra las radiaciones más fuertes no existiría ningún tipo de vida; o la corteza terrestre entera y las zonas superiores del manto, sin las cuales no existiría la actividad volcánica, que resulta necesaria para enriquecer el suelo con nuevas sustancias minerales.
Por tanto, la biosfera es un ecosistema tan grande como el planeta Tierra y en continua modificación por causas naturales y (desgraciadamente) artificiales.
Las modificaciones naturales se producen a escalas temporales muy variables: en tiempos larguísimos determinados por la evolución astronómica y geológica, que influyen decididamente en las características climáticas de los distintos ambientes (por ejemplo, durante las glaciaciones), o en tiempos más breves, relacionados con cambios climáticos desencadenados por sucesos geológicos-atmosféricos imprevistos (por ejemplo, la erupción de un volcán, que expulsa a la atmósfera grandes cantidades de cenizas capaces de modificar el clima de extensas áreas durante periodos considerables).
En cambio, las modificaciones artificiales debidas a la actividad humana tienen efectos rápidos: la deforestación producida en África por las campañas de conquista romanas contribuyó a acelerar la desertificación del Sahara, como tampoco hay duda de que la actividad industrial de los últimos siglos determina modificaciones dramáticas y repentinas en los equilibrios biológicos.
La biosfera es el punto de encuentro entre las diversas “esferas” en las que se subdivide la Tierra: está surcada por un flujo continuo de energía procedente tanto del interior del planeta como del exterior, y se caracteriza por el intercambio continuo de materia, en un ciclo incesante que une todos los entornos.
Pero no por esta razón hay vida por todas partes, pues la vida requiere condiciones particulares e imprescindibles. Existen determinados elementos físicos y químicos que “limitan” el desarrollo de la vida. La presencia y disponibilidad de agua es el primero y el más importante. El agua es el disolvente universal para la química de la vida; es el componente primario de todos los organismos y sin agua la vida es inconcebible (Tales de Mileto fue el primero en darse cuenta de ello). Pero no sólo es eso: al pasar del estado sólido al líquido y al gaseoso y viceversa, el agua mantiene el “efecto invernadero natural”, capaz de conservar la temperatura del planeta dentro de los niveles compatibles con la vida (es decir, poco por debajo de los 0º C y poco por encima de los 40º C).
La presión, que no deberá superar mucho el kilogramo por centímetro cuadrado (como sucede alrededor de los 10 m de profundidad en el mar), así como una amplia disponibilidad de sales minerales y de luz solar (indispensable para la vida en general y de las de las plantas en particular) son también factores que marcan las posibilidades de vida.
Sí, hemos tenido la suerte de venir a caer en un planeta óptimo para la presencia de la vida y que ésta, haya tenido tiempo de evolucionar para alcanzar la consciencia. Sin embargo, como nuestra Galaxia hay cien mil millones más en la inmensidad del Universo y, no podemos creer que nuestro planeta es único en toda esta grandeza. Estudiamos lo que tenemos más cercano y, de esa manera, también podemos saber sobre lo que está muy lejos perdido en el espacio “infinito”. Conociendo lo que pasa aquí, sabremos lo que ocurre “allí”. Como decía Einstein: “El Universo es igual en todas partes, por muy lejos que éstas se puedan encontrar.”
Publicado por emilio silvera
Ene
4
¡Nuestra curiosidad! ¿Nos pasará lo que le pasó al gato?
por Emilio Silvera ~
Clasificado en De lo pequeño a lo grande ~
Comments (3)
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Ahora, hemos llegado a comprender muchas de las cosas que, hasta bien poco tiempo, eran auténticos secretos que, el Universo, celosamente se guardaba, y, esa comprensión, nos llevará más lejos y nos permitirá realizar un largo camino hacia el corazón mismo de la materia, donde según parece, pueden resider infinitesimales objetos más pequeños que los Quarks, en esa distancia inalcanzable ahora que hemos llamado, el Límite de Planck.
Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Sion embargo, nos queda la duda de: ¿qué podrá haber más allá de los Quarks?
¿estructura fundamental?… (¿)
La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.
Molécula H2O
Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo. Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.
Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.
Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.
Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.
Macromolécula
Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.
célula cerebral
Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros. Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.
Molécula de ADN
Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.
Átomo de Carbono
Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Una vez que fueron eliminados los antiquarks, se unieron en tripletes para formar protones y neutrones que, al formar un núcleo cargado positivamente, atrayeron a los electrones que dieron lugar a formar los átomos que más tarde, conformaron la materia que podemos ver en nuestro unioverso.
Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.
Los Quarks dentro del núcleo están sometidos a la Interacción fuerte, es decir, la más potente de las cuatro fuerzas fundamentales del Universo, la que mantiene a los Quarks confinados dentro del núcleo atómico por medio de los Gluones.
Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.
Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.
El acelerador de 200 kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.
Aquel acelerador nada tenía que ver con el LHC de ahora, casi un siglo los separa
Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo supercolisionador superconductor proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.
El Tevatrón del Fermilab ya estaba en el camino de la modernidad en los avances de la Física
Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.
Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.
Recreación del Universo primitivo
Bueno amigos, el trabajo era algo más extenso y entrábamos a explicar otros aspectos y parámetros implicados en todo este complejo laberinto que abarca desde lo muy grande hasta la muy pequeño, esos dos mundos que, no por ser tan dispares, resultan ser antagónicos, porque el uno sin el otro no podría exisitir. Otro día (quedan muchos por delante en este año que comienza), seguiremos abundando en el tema apasionante que aquí tratamos.
emilio silvera